Desempenho MYSQL OR vs IN


180

Gostaria de saber se existe alguma diferença em relação ao desempenho entre os seguintes

SELECT ... FROM ... WHERE someFIELD IN(1,2,3,4)

SELECT ... FROM ... WHERE someFIELD between  0 AND 5

SELECT ... FROM ... WHERE someFIELD = 1 OR someFIELD = 2 OR someFIELD = 3 ... 

ou o MySQL otimizará o SQL da mesma maneira que os compiladores otimizarão o código?

EDIT: Alterou o AND's para OR' s, pelo motivo indicado nos comentários.


Também estou pesquisando isso, mas em oposição a algumas instruções que IN será convertido na linha de ORs, s I could say that it can also be converted to UNIONque é recomendada para substituir os ORs para otimizar a consulta.
Jānis Gruzis

Respostas:


249

Eu precisava saber disso com certeza, então fiz um benchmarking dos dois métodos. Eu sempre achei INmuito mais rápido do que usar OR.

Não acredite nas pessoas que dão a sua "opinião", a ciência tem tudo a ver com testes e evidências.

Eu executei um loop de 1000x as consultas equivalentes (por consistência, eu usei sql_no_cache):

IN: 2.34969592094s

OR: 5.83781504631s

Atualização:
(não tenho o código-fonte do teste original, como era há 6 anos, embora ele retorne um resultado no mesmo intervalo que este teste)

Na solicitação de algum código de amostra para testar isso, este é o caso de uso mais simples possível. Usando o Eloquent para simplificar a sintaxe, o equivalente bruto em SQL executa o mesmo.

$t = microtime(true); 
for($i=0; $i<10000; $i++):
$q = DB::table('users')->where('id',1)
    ->orWhere('id',2)
    ->orWhere('id',3)
    ->orWhere('id',4)
    ->orWhere('id',5)
    ->orWhere('id',6)
    ->orWhere('id',7)
    ->orWhere('id',8)
    ->orWhere('id',9)
    ->orWhere('id',10)
    ->orWhere('id',11)
    ->orWhere('id',12)
    ->orWhere('id',13)
    ->orWhere('id',14)
    ->orWhere('id',15)
    ->orWhere('id',16)
    ->orWhere('id',17)
    ->orWhere('id',18)
    ->orWhere('id',19)
    ->orWhere('id',20)->get();
endfor;
$t2 = microtime(true); 
echo $t."\n".$t2."\n".($t2-$t)."\n";

1482080514.3635
1482080517.3713
3.0078368186951

$t = microtime(true); 
for($i=0; $i<10000; $i++): 
$q = DB::table('users')->whereIn('id',[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])->get(); 
endfor; 
$t2 = microtime(true); 
echo $t."\n".$t2."\n".($t2-$t)."\n";

1482080534.0185
1482080536.178
2.1595389842987


21
Quais índices foram usados ​​nesses testes?
eggyal 01/01

5
Eu também estava otimizando consultas e descobri que a INdeclaração era cerca de 30% mais rápida que uma OR.
Timo002

12
Do not believe people who give their "opinion"Você está 100% certo, Stack Overflow é, infelizmente, cheio deles
elipoultorak

7
Razão Desempenho (citando MariaDB (a MySQL novo ramo livre) docs): => se sua coluna é inteiro, passam inteiros para também ...Returns 1 if expr is equal to any of the values in the IN list, else returns 0. If all values are constants, they are evaluated according to the type of expr and sorted. The search for the item then is done using a binary search. This means IN is very quick if the IN value list consists entirely of constants . Otherwise, type conversion takes place according to the rules described at Type Conversion, but applied to all the arguments.IN
jave.web

10
Como corolário de ' Não acredite nas pessoas que opinam ': fornecer números de desempenho sem incluir os scripts, tabelas e índices usados ​​para obter esses números os torna inverificáveis. Como tal, os números são tão bons quanto uma "opinião".
Disillusioned

67

Também fiz um teste para futuros Googlers. A contagem total de resultados retornados é 7264 de 10000

SELECT * FROM item WHERE id = 1 OR id = 2 ... id = 10000

Esta consulta levou 0.1239segundos

SELECT * FROM item WHERE id IN (1,2,3,...10000)

Esta consulta levou 0.0433segundos

IN é 3 vezes mais rápido que OR


15
Qual era o mecanismo do MySQL e você limpou os buffers do MySQL e os caches de arquivos do SO entre as duas consultas?
precisa saber é o seguinte

2
Seu teste é um caso de uso restrito. A consulta retorna 72% dos dados e é improvável que se beneficie dos índices.
Disillusioned

Aposto que a maior parte desse tempo estava consumindo a consulta, analisando-a e planejando-a. Isso certamente é uma consideração: se você tiver instruções OR de 10k, terá um monte de texto redundante apenas expressando-o com OR: melhor usar a expressão mais compacta possível.
Bishop

17

A resposta aceita não explica o motivo.

Abaixo estão citados o MySQL de Alto Desempenho, 3ª Edição.

Em muitos servidores de banco de dados, IN () é apenas um sinônimo de várias cláusulas OR, porque as duas são logicamente equivalentes. Não é assim no MySQL, que classifica os valores na lista IN () e usa uma pesquisa binária rápida para verificar se um valor está na lista. Este é O (Log n) no tamanho da lista, enquanto uma série equivalente de cláusulas OR é O (n) no tamanho da lista (ou seja, muito mais lento para listas grandes)


Referência fantástica ao motivo específico do banco de dados. Agradável!
Joshua Pinter

Perfeito e
direto

16

Eu acho que o BETWEEN será mais rápido, pois deve ser convertido em:

Field >= 0 AND Field <= 5

Entendo que um IN será convertido em várias instruções OR de qualquer maneira. O valor de IN é a facilidade de uso. (Economizando em digitar o nome de cada coluna várias vezes e também facilita o uso com a lógica existente - você não precisa se preocupar com a precedência AND / OR porque a IN é uma instrução. Com várias instruções OR, você tem para garantir que você os coloque entre parênteses para garantir que eles sejam avaliados como uma condição.)

A única resposta real para sua pergunta é PERFIL SUAS PERGUNTAS . Então você saberá o que funciona melhor em sua situação específica.


Estatisticamente, o Between tem uma chance de acionar o índice do intervalo. IN () não tem esse privilégio. Mas sim, a praia está certa: você PRECISA criar um perfil de sua solicitação para saber se um índice é usado e qual. É realmente difícil prever o que o otimizador do MySQL escolherá.
Savageman

"Entendo que um IN será convertido em várias instruções OR de qualquer maneira". Onde você leu isso? Eu esperaria colocá-lo em um hashmap para fazer O (1) pesquisas.
Ztyx

A conversão de IN em OU é como o SQLServer lida com isso (ou pelo menos o fez - pode ter mudado agora, não o usa há anos). Não consegui encontrar nenhuma evidência de que o MySQL faça isso.
RichardAtHome

4
Esta resposta está correta, entre é convertido em "1 <= film_id <= 5". As outras duas soluções não são dobradas em uma única condição de faixa. Eu tenho um post que demonstra isso usando TRACE OPTIMIZER aqui: tocker.ca/2015/05/25/...
Morgan Tocker

13

Depende do que você está fazendo; quão amplo é o intervalo, qual é o tipo de dados (eu sei que seu exemplo usa um tipo de dados numérico, mas sua pergunta também pode se aplicar a vários tipos de dados diferentes).

Esta é uma instância em que você deseja gravar a consulta nos dois sentidos; faça-o funcionar e use EXPLAIN para descobrir as diferenças de execução.

Tenho certeza de que há uma resposta concreta para isso, mas é assim que, na prática, descobriria a resposta para minha pergunta.

Isso pode ser de alguma ajuda: http://forge.mysql.com/wiki/Top10SQLPerformanceTips

Atenciosamente,
Frank


2
Essa deve ser a resposta selecionada.
9134 Jon Z

3
O link está obsoleto - acho que isso pode ser o equivalente? wikis.oracle.com/pages/viewpage.action?pageId=27263381 (obrigado Oracle ;-P)
ilasno

1
Na página equivalente, diz: "Evite usar IN (...) ao selecionar nos campos indexados, isso prejudicará o desempenho da consulta SELECT". - Alguma idéia do porquê disso?
jorisw

o URL expirou #
Steve Jiang

7

Eu acho que uma explicação para a observação do sunseeker é que o MySQL realmente classifica os valores na instrução IN se todos forem valores estáticos e usando a pesquisa binária, que é mais eficiente que a alternativa OR simples. Não me lembro de onde li isso, mas o resultado de sunseeker parece ser uma prova.


4

Apenas quando você pensou que era seguro ...

Qual é o seu valor eq_range_index_dive_limit? Em particular, você tem mais ou menos itens noIN cláusula?

Isso não incluirá um benchmark, mas examinará um pouco o funcionamento interno. Vamos usar uma ferramenta para ver o que está acontecendo - rastreamento do otimizador.

A pergunta: SELECT * FROM canada WHERE id ...

Com um ORde 3 valores , parte do rastreamento se parece com:

       "condition_processing": {
          "condition": "WHERE",
          "original_condition": "((`canada`.`id` = 296172) or (`canada`.`id` = 295093) or (`canada`.`id` = 293626))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(multiple equal(296172, `canada`.`id`) or multiple equal(295093, `canada`.`id`) or multiple equal(293626, `canada`.`id`))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "293626 <= id <= 293626",
                      "295093 <= id <= 295093",
                      "296172 <= id <= 296172"
                    ],
                    "index_dives_for_eq_ranges": true,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "((`canada`.`id` = 296172) or (`canada`.`id` = 295093) or (`canada`.`id` = 293626))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

Observe como o ICP está sendo administrado ORs. Isso implica que ORnão é transformado INe o InnoDB executará vários =testes pelo ICP. (Eu não acho que vale a pena considerar o MyISAM.)

(Este é o 5.6.22-71.0-log da Percona; idé um índice secundário.)

Agora para IN () com alguns valores

eq_range_index_dive_limit= 10; existem 8 valores.

        "condition_processing": {
          "condition": "WHERE",
          "original_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "293626 <= id <= 293626",
                      "295093 <= id <= 295093",
                      "295573 <= id <= 295573",
                      "295588 <= id <= 295588",
                      "295810 <= id <= 295810",
                      "296127 <= id <= 296127",
                      "296172 <= id <= 296172",
                      "297148 <= id <= 297148"
                    ],
                    "index_dives_for_eq_ranges": true,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "(`canada`.`id` in (296172,295093,293626,295573,297148,296127,295588,295810))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

Observe que o INarquivo não parece ter sido transformado OR.

Uma observação lateral: observe que os valores constantes foram classificados . Isso pode ser benéfico de duas maneiras:

  • Ao pular menos, pode haver melhor cache, menos E / S para atingir todos os valores.
  • Se duas consultas semelhantes vierem de conexões separadas e estiverem em transações, há uma chance maior de obter um atraso em vez de um conflito devido a listas sobrepostas.

Por fim, IN () com muitos valores

      {
        "condition_processing": {
          "condition": "WHERE",
          "original_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))",
          "steps": [
            {
              "transformation": "equality_propagation",
              "resulting_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))"
            },

...

              "analyzing_range_alternatives": {
                "range_scan_alternatives": [
                  {
                    "index": "id",
                    "ranges": [
                      "291752 <= id <= 291752",
                      "291839 <= id <= 291839",
                      ...
                      "297196 <= id <= 297196",
                      "297201 <= id <= 297201"
                    ],
                    "index_dives_for_eq_ranges": false,
                    "rows": 111,
                    "chosen": true

...

        "refine_plan": [
          {
            "table": "`canada`",
            "pushed_index_condition": "(`canada`.`id` in (293831,292259,292881,293440,292558,295792,292293,292593,294337,295430,295034,297060,293811,295587,294651,295559,293213,295742,292605,296018,294529,296711,293919,294732,294689,295540,293000,296916,294433,297112,293815,292522,296816,293320,293232,295369,291894,293700,291839,293049,292738,294895,294473,294023,294173,293019,291976,294923,294797,296958,294075,293450,296952,297185,295351,295736,296312,294330,292717,294638,294713,297176,295896,295137,296573,292236,294966,296642,296073,295903,293057,294628,292639,293803,294470,295353,297196,291752,296118,296964,296185,295338,295956,296064,295039,297201,297136,295206,295986,292172,294803,294480,294706,296975,296604,294493,293181,292526,293354,292374,292344,293744,294165,295082,296203,291918,295211,294289,294877,293120,295387))",
            "table_condition_attached": null,
            "access_type": "range"
          }
        ]

Nota lateral: eu precisava disso devido ao volume do rastreamento:

@@global.optimizer_trace_max_mem_size = 32222;

3

OU será mais lento. Se IN ou BETWEEN é mais rápido, dependerá dos seus dados, mas eu espero que BETWEEN seja mais rápido normalmente, pois pode simplesmente variar um intervalo de um índice (assumindo que someField esteja indexado).


3

Abaixo estão os detalhes de 6 consultas usando o MySQL 5.6 @SQLFiddle

Em resumo, as 6 consultas cobrem colunas indexadas independentemente e 2 consultas foram usadas por tipo de dados. Todas as consultas resultaram no uso de um índice, independentemente de IN () ou ORs serem usados.

        |   ORs      |   IN()
integer | uses index | uses index
date    | uses index | uses index
varchar | uses index | uses index

Eu realmente só queria desmascarar as declarações feitas que OR significa que nenhum índice pode ser usado. Isso não é verdade. Os índices podem ser usados ​​em consultas usando OR, conforme as 6 consultas nos exemplos a seguir são exibidas.

Também me parece que muitos ignoraram o fato de que IN () é um atalho de sintaxe para um conjunto de ORs. Em pequena escala, as diferenças de desempenho entre o uso de IN () -v- OR são extremamente (infintessinalmente) marginais.

Embora em escala maior, IN () seja certamente mais conveniente, mas ainda é igual a um conjunto de condições OR logicamente. Alteração de circunstâncias para cada consulta, portanto, sempre é melhor testar sua consulta em suas tabelas.

Resumo dos 6 planos de explicação, todos "Usando a condição de índice" (role para a direita)

  Query               select_type    table    type    possible_keys      key      key_len   ref   rows   filtered           Extra          
                      ------------- --------- ------- --------------- ----------- --------- ----- ------ ---------- ----------------------- 
  Integers using OR   SIMPLE        mytable   range   aNum_idx        aNum_idx    4               10     100.00     Using index condition  
  Integers using IN   SIMPLE        mytable   range   aNum_idx        aNum_idx    4               10     100.00     Using index condition  
  Dates using OR      SIMPLE        mytable   range   aDate_idx       aDate_idx   6               7      100.00     Using index condition  
  Dates using IN      SIMPLE        mytable   range   aDate_idx       aDate_idx   6               7      100.00     Using index condition  
  Varchar using OR    SIMPLE        mytable   range   aName_idx       aName_idx   768             10     100.00     Using index condition  
  Varchar using IN    SIMPLE        mytable   range   aName_idx       aName_idx   768             10     100.00     Using index condition  

SQL Fiddle

Configuração do Esquema do MySQL 5.6 :

CREATE TABLE `myTable` (
  `id` mediumint(8) unsigned NOT NULL auto_increment,
  `aName` varchar(255) default NULL,
  `aDate` datetime,
  `aNum`  mediumint(8),
  PRIMARY KEY (`id`)
) AUTO_INCREMENT=1;

ALTER TABLE `myTable` ADD INDEX `aName_idx` (`aName`);
ALTER TABLE `myTable` ADD INDEX `aDate_idx` (`aDate`);
ALTER TABLE `myTable` ADD INDEX `aNum_idx` (`aNum`);

INSERT INTO `myTable` (`aName`,`aDate`)
 VALUES 
 ("Daniel","2017-09-19 01:22:31")
,("Quentin","2017-06-03 01:06:45")
,("Chester","2017-06-14 17:49:36")
,("Lev","2017-08-30 06:27:59")
,("Garrett","2018-10-04 02:40:37")
,("Lane","2017-01-22 17:11:21")
,("Chaim","2017-09-20 11:13:46")
,("Kieran","2018-03-10 18:37:26")
,("Cedric","2017-05-20 16:25:10")
,("Conan","2018-07-10 06:29:39")
,("Rudyard","2017-07-14 00:04:00")
,("Chadwick","2018-08-18 08:54:08")
,("Darius","2018-10-02 06:55:56")
,("Joseph","2017-06-19 13:20:33")
,("Wayne","2017-04-02 23:20:25")
,("Hall","2017-10-13 00:17:24")
,("Craig","2016-12-04 08:15:22")
,("Keane","2018-03-12 04:21:46")
,("Russell","2017-07-14 17:21:58")
,("Seth","2018-07-25 05:51:30")
,("Cole","2018-06-09 15:32:53")
,("Donovan","2017-08-12 05:21:35")
,("Damon","2017-06-27 03:44:19")
,("Brian","2017-02-01 23:35:20")
,("Harper","2017-08-25 04:29:27")
,("Chandler","2017-09-30 23:54:06")
,("Edward","2018-07-30 12:18:07")
,("Curran","2018-05-23 09:31:53")
,("Uriel","2017-05-08 03:31:43")
,("Honorato","2018-04-07 14:57:53")
,("Griffin","2017-01-07 23:35:31")
,("Hasad","2017-05-15 05:32:41")
,("Burke","2017-07-04 01:11:19")
,("Hyatt","2017-03-14 17:12:28")
,("Brenden","2017-10-17 05:16:14")
,("Ryan","2018-10-10 08:07:55")
,("Giacomo","2018-10-06 14:21:21")
,("James","2018-02-06 02:45:59")
,("Colt","2017-10-10 08:11:26")
,("Kermit","2017-09-18 16:57:16")
,("Drake","2018-05-20 22:08:36")
,("Berk","2017-04-16 17:39:32")
,("Alan","2018-09-01 05:33:05")
,("Deacon","2017-04-20 07:03:05")
,("Omar","2018-03-02 15:04:32")
,("Thaddeus","2017-09-19 04:07:54")
,("Troy","2016-12-13 04:24:08")
,("Rogan","2017-11-02 00:03:25")
,("Grant","2017-08-21 01:45:16")
,("Walker","2016-11-26 15:54:52")
,("Clarke","2017-07-20 02:26:56")
,("Clayton","2018-08-16 05:09:29")
,("Denton","2018-08-11 05:26:05")
,("Nicholas","2018-07-19 09:29:55")
,("Hashim","2018-08-10 20:38:06")
,("Todd","2016-10-25 01:01:36")
,("Xenos","2017-05-11 22:50:35")
,("Bert","2017-06-17 18:08:21")
,("Oleg","2018-01-03 13:10:32")
,("Hall","2018-06-04 01:53:45")
,("Evan","2017-01-16 01:04:25")
,("Mohammad","2016-11-18 05:42:52")
,("Armand","2016-12-18 06:57:57")
,("Kaseem","2018-06-12 23:09:57")
,("Colin","2017-06-29 05:25:52")
,("Arthur","2016-12-29 04:38:13")
,("Xander","2016-11-14 19:35:32")
,("Dante","2016-12-01 09:01:04")
,("Zahir","2018-02-17 14:44:53")
,("Raymond","2017-03-09 05:33:06")
,("Giacomo","2017-04-17 06:12:52")
,("Fulton","2017-06-04 00:41:57")
,("Chase","2018-01-14 03:03:57")
,("William","2017-05-08 09:44:59")
,("Fuller","2017-03-31 20:35:20")
,("Jarrod","2017-02-15 02:45:29")
,("Nissim","2018-03-11 14:19:25")
,("Chester","2017-11-05 00:14:27")
,("Perry","2017-12-24 11:58:04")
,("Theodore","2017-06-26 12:34:12")
,("Mason","2017-10-02 03:53:49")
,("Brenden","2018-10-08 10:09:47")
,("Jerome","2017-11-05 20:34:25")
,("Keaton","2018-08-18 00:55:56")
,("Tiger","2017-05-21 16:59:07")
,("Benjamin","2018-04-10 14:46:36")
,("John","2018-09-05 18:53:03")
,("Jakeem","2018-10-11 00:17:38")
,("Kenyon","2017-12-18 22:19:29")
,("Ferris","2017-03-29 06:59:13")
,("Hoyt","2017-01-03 03:48:56")
,("Fitzgerald","2017-07-27 11:27:52")
,("Forrest","2017-10-05 23:14:21")
,("Jordan","2017-01-11 03:48:09")
,("Lev","2017-05-25 08:03:39")
,("Chase","2017-06-18 19:09:23")
,("Ryder","2016-12-13 12:50:50")
,("Malik","2017-11-19 15:15:55")
,("Zeph","2018-04-04 11:22:12")
,("Amala","2017-01-29 07:52:17")
;

.

update MyTable
set aNum = id
;

Consulta 1 :

select 'aNum by OR' q, mytable.*
from mytable
where aNum = 12
OR aNum = 22
OR aNum = 27
OR aNum = 32
OR aNum = 42
OR aNum = 52
OR aNum = 62
OR aNum = 65
OR aNum = 72
OR aNum = 82

Resultados :

|          q | id |    aName |                aDate | aNum |
|------------|----|----------|----------------------|------|
| aNum by OR | 12 | Chadwick | 2018-08-18T08:54:08Z |   12 |
| aNum by OR | 22 |  Donovan | 2017-08-12T05:21:35Z |   22 |
| aNum by OR | 27 |   Edward | 2018-07-30T12:18:07Z |   27 |
| aNum by OR | 32 |    Hasad | 2017-05-15T05:32:41Z |   32 |
| aNum by OR | 42 |     Berk | 2017-04-16T17:39:32Z |   42 |
| aNum by OR | 52 |  Clayton | 2018-08-16T05:09:29Z |   52 |
| aNum by OR | 62 | Mohammad | 2016-11-18T05:42:52Z |   62 |
| aNum by OR | 65 |    Colin | 2017-06-29T05:25:52Z |   65 |
| aNum by OR | 72 |   Fulton | 2017-06-04T00:41:57Z |   72 |
| aNum by OR | 82 |  Brenden | 2018-10-08T10:09:47Z |   82 |

Consulta 2 :

select 'aNum by IN' q, mytable.*
from mytable
where aNum IN (
            12
          , 22
          , 27
          , 32
          , 42
          , 52
          , 62
          , 65
          , 72
          , 82
          )

Resultados :

|          q | id |    aName |                aDate | aNum |
|------------|----|----------|----------------------|------|
| aNum by IN | 12 | Chadwick | 2018-08-18T08:54:08Z |   12 |
| aNum by IN | 22 |  Donovan | 2017-08-12T05:21:35Z |   22 |
| aNum by IN | 27 |   Edward | 2018-07-30T12:18:07Z |   27 |
| aNum by IN | 32 |    Hasad | 2017-05-15T05:32:41Z |   32 |
| aNum by IN | 42 |     Berk | 2017-04-16T17:39:32Z |   42 |
| aNum by IN | 52 |  Clayton | 2018-08-16T05:09:29Z |   52 |
| aNum by IN | 62 | Mohammad | 2016-11-18T05:42:52Z |   62 |
| aNum by IN | 65 |    Colin | 2017-06-29T05:25:52Z |   65 |
| aNum by IN | 72 |   Fulton | 2017-06-04T00:41:57Z |   72 |
| aNum by IN | 82 |  Brenden | 2018-10-08T10:09:47Z |   82 |

Consulta 3 :

select 'adate by OR' q, mytable.*
from mytable
where aDate= str_to_date("2017-02-15 02:45:29",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-03-10 18:37:26",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2017-05-20 16:25:10",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-07-10 06:29:39",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2017-07-14 00:04:00",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-08-18 08:54:08",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-10-02 06:55:56",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2017-04-20 07:03:05",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2018-03-02 15:04:32",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2017-09-19 04:07:54",'%Y-%m-%d %h:%i:%s')
OR aDate = str_to_date("2016-12-13 04:24:08",'%Y-%m-%d %h:%i:%s')

Resultados :

|           q | id |    aName |                aDate | aNum |
|-------------|----|----------|----------------------|------|
| adate by OR | 47 |     Troy | 2016-12-13T04:24:08Z |   47 |
| adate by OR | 76 |   Jarrod | 2017-02-15T02:45:29Z |   76 |
| adate by OR | 44 |   Deacon | 2017-04-20T07:03:05Z |   44 |
| adate by OR | 46 | Thaddeus | 2017-09-19T04:07:54Z |   46 |
| adate by OR | 10 |    Conan | 2018-07-10T06:29:39Z |   10 |
| adate by OR | 12 | Chadwick | 2018-08-18T08:54:08Z |   12 |
| adate by OR | 13 |   Darius | 2018-10-02T06:55:56Z |   13 |

Consulta 4 :

select 'adate by IN' q, mytable.*
from mytable
where aDate IN (
          str_to_date("2017-02-15 02:45:29",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-03-10 18:37:26",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2017-05-20 16:25:10",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-07-10 06:29:39",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2017-07-14 00:04:00",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-08-18 08:54:08",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-10-02 06:55:56",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2017-04-20 07:03:05",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2018-03-02 15:04:32",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2017-09-19 04:07:54",'%Y-%m-%d %h:%i:%s')
        , str_to_date("2016-12-13 04:24:08",'%Y-%m-%d %h:%i:%s')
        )

Resultados :

|           q | id |    aName |                aDate | aNum |
|-------------|----|----------|----------------------|------|
| adate by IN | 47 |     Troy | 2016-12-13T04:24:08Z |   47 |
| adate by IN | 76 |   Jarrod | 2017-02-15T02:45:29Z |   76 |
| adate by IN | 44 |   Deacon | 2017-04-20T07:03:05Z |   44 |
| adate by IN | 46 | Thaddeus | 2017-09-19T04:07:54Z |   46 |
| adate by IN | 10 |    Conan | 2018-07-10T06:29:39Z |   10 |
| adate by IN | 12 | Chadwick | 2018-08-18T08:54:08Z |   12 |
| adate by IN | 13 |   Darius | 2018-10-02T06:55:56Z |   13 |

Consulta 5 :

select 'name by  OR' q, mytable.*
from mytable
where aname = 'Alan'
OR aname = 'Brian'
OR aname = 'Chandler'
OR aname = 'Darius'
OR aname = 'Evan'
OR aname = 'Ferris'
OR aname = 'Giacomo'
OR aname = 'Hall'
OR aname = 'James'
OR aname = 'Jarrod'

Resultados :

|           q | id |    aName |                aDate | aNum |
|-------------|----|----------|----------------------|------|
| name by  OR | 43 |     Alan | 2018-09-01T05:33:05Z |   43 |
| name by  OR | 24 |    Brian | 2017-02-01T23:35:20Z |   24 |
| name by  OR | 26 | Chandler | 2017-09-30T23:54:06Z |   26 |
| name by  OR | 13 |   Darius | 2018-10-02T06:55:56Z |   13 |
| name by  OR | 61 |     Evan | 2017-01-16T01:04:25Z |   61 |
| name by  OR | 90 |   Ferris | 2017-03-29T06:59:13Z |   90 |
| name by  OR | 37 |  Giacomo | 2018-10-06T14:21:21Z |   37 |
| name by  OR | 71 |  Giacomo | 2017-04-17T06:12:52Z |   71 |
| name by  OR | 16 |     Hall | 2017-10-13T00:17:24Z |   16 |
| name by  OR | 60 |     Hall | 2018-06-04T01:53:45Z |   60 |
| name by  OR | 38 |    James | 2018-02-06T02:45:59Z |   38 |
| name by  OR | 76 |   Jarrod | 2017-02-15T02:45:29Z |   76 |

Consulta 6 :

select 'name by IN' q, mytable.*
from mytable
where aname IN (
      'Alan'
     ,'Brian'
     ,'Chandler'
     , 'Darius'
     , 'Evan'
     , 'Ferris'
     , 'Giacomo'
     , 'Hall'
     , 'James'
     , 'Jarrod'
     )

Resultados :

|          q | id |    aName |                aDate | aNum |
|------------|----|----------|----------------------|------|
| name by IN | 43 |     Alan | 2018-09-01T05:33:05Z |   43 |
| name by IN | 24 |    Brian | 2017-02-01T23:35:20Z |   24 |
| name by IN | 26 | Chandler | 2017-09-30T23:54:06Z |   26 |
| name by IN | 13 |   Darius | 2018-10-02T06:55:56Z |   13 |
| name by IN | 61 |     Evan | 2017-01-16T01:04:25Z |   61 |
| name by IN | 90 |   Ferris | 2017-03-29T06:59:13Z |   90 |
| name by IN | 37 |  Giacomo | 2018-10-06T14:21:21Z |   37 |
| name by IN | 71 |  Giacomo | 2017-04-17T06:12:52Z |   71 |
| name by IN | 16 |     Hall | 2017-10-13T00:17:24Z |   16 |
| name by IN | 60 |     Hall | 2018-06-04T01:53:45Z |   60 |
| name by IN | 38 |    James | 2018-02-06T02:45:59Z |   38 |
| name by IN | 76 |   Jarrod | 2017-02-15T02:45:29Z |   76 |

2

Aposto que são iguais, você pode executar um teste fazendo o seguinte:

faça um loop sobre o "in (1,2,3,4)" 500 vezes e veja quanto tempo leva. faça um loop sobre a versão "= 1 ou = 2 ou = 3 ..." 500 vezes e veja quanto tempo é executado.

você também pode tentar uma junção, se someField for um índice e sua tabela for grande, poderá ser mais rápido ...

SELECT ... 
    FROM ... 
        INNER JOIN (SELECT 1 as newField UNION ALL SELECT 2 UNION ALL SELECT 3 UNION ALL SELECT 4) dt ON someFIELD =newField

Eu tentei o método de junção acima no meu SQL Server e é quase o mesmo que o em (1,2,3,4), e ambos resultam em uma busca de índice em cluster. Não tenho certeza de como o MySQL irá lidar com eles.



0

Pelo que entendi da maneira como o compilador otimiza esses tipos de consultas, o uso da cláusula IN é mais eficiente do que várias cláusulas OR. Se você tiver valores nos quais a cláusula BETWEEN pode ser usada, isso é ainda mais eficiente.


0

Eu sei que, desde que você tenha um índice no Field, o BETWEEN o usará para encontrar rapidamente uma extremidade e depois atravessar para a outra. Isso é mais eficiente.

Cada EXPLAIN que eu vi mostra "IN (...)" e "... OR ..." serem intercambiáveis ​​e igualmente (in) eficientes. O que você esperaria, já que o otimizador não tem como saber se compreende ou não um intervalo. Também é equivalente a um UNION ALL SELECT nos valores individuais.


0

Conforme explicado por outros, IN é mais bem escolhido que OU com relação ao desempenho da consulta.

Consultas com condição OR podem levar mais tempo de execução nos casos abaixo.

  1. executar se o otimizador do MySQL escolher qualquer outro índice para ser eficiente (durante casos de falsos positivos).
  2. Se o número de registros for maior (conforme claramente indicado por Jacob)
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.