Caso I: Os 2 qubits não estão enredados.
Você pode escrever os estados dos dois qubits (digamos e B ) como | ψ A ⟩ = um | 0 ⟩ + b | 1 ⟩ e | ψ B ⟩ = c | 0 ⟩ + d | 1 ⟩ onde um , b , c , d ∈ C .AB|ψA⟩=a|0⟩+b|1⟩|ψB⟩=c|0⟩+d|1⟩a,b,c,d∈C
Os qubits individuais residem em dois espaços vetoriais complexos dimensionais (ao longo de um C de campo). Mas o estado do sistema é um vector (ou ponto ) residente em quatro dimensional complexo espaço vetorial C 4 (mais de um C de campo).C2CC4C
O estado do sistema pode ser escrito como um produto tensorial ou seja, um c | 00 ⟩ + um d | 01 ⟩ + b c | 10 ⟩ + b d | 11 ⟩ .|ψA⟩⊗|ψB⟩ac|00⟩+ad|01⟩+bc|10⟩+bd|11⟩
Naturalmente pois o vetor de estado deve ser normalizado. A razão pela qual o quadrado da amplitude de um estado base dá a probabilidade desse estado base ocorrer quando medido na base correspondente, está na regra de Born da mecânica quântica (alguns físicos consideram esse um postulado básico da mecânica quântica) . Agora, probabilidade de | 0 ⟩ que ocorre quando o primeiro qbit é medido é|ac|2+|ad|2+|bc|2+|bd|2=1|0⟩ . Da mesma forma, probabilidade de | 1 ⟩ que ocorre quando o primeiro qubit é medido é | b c | 2 + | b d | 2 .|ac|2+|ad|2|1⟩|bc|2+|bd|2
Now, what happens if we apply a quantum gate without performing any measurement on the previous state of the system? Quantum gates are unitary gates. Their action can be written as action of an unitary operator U on the initial state of the system i.e. ac|00⟩+ad|01⟩+bc|10⟩+bd|11⟩ to produce a new state A|00⟩+B|01⟩+C|10⟩+D|11⟩A,B,C,D∈C). The magnitude of this new state vector: |A|2+|B|2+|C|2+|D|2 again equates to 1, since the applied gate was unitary. When the first qubit is measured, probability of |0⟩ occurring is |A|2+|B|2 and similarly you can find it for occurrence of |1⟩.
But if we did perform a measurement, before the action of the unitary gate the result would be different. For example of you had measured the first qubit and it turned out to be in |0⟩ state the intermediate state of the system would have collapsed to ac|00⟩+ad|01⟩(ac)2+(ad)2√ (according to the Copenhagen interpretation). So you can understand that applying the same quantum gate on this state would have given a different final result.
Case II: The 2 qubits are entangled.
In case the state of the system is something like 12√|00⟩+12√|11⟩ , you cannot represent it as a tensor product of states of two individual qubits (try!). There are plenty more such examples. The qubits are said to entangled in such a case.
Anyway, the basic logic still remains same. The probability of |0⟩ occuring when the first qubit is measured is |1/2–√|2=12 and |1⟩ occuring is 12 too. Similarly you can find out the probabilities for measurement of the second qubit.
Again if you apply a unitary quantum gate on this state, you'd end up with something like A|00⟩+B|01⟩+C|10⟩+D|11⟩, as before. I hope you can now yourself find out the probabilities of the different possibilities when the first and second qubits are measured.
|00⟩,|01⟩,|10⟩,|11⟩4×1⎡⎣⎢⎢⎢1000⎤⎦⎥⎥⎥, ⎡⎣⎢⎢⎢0100⎤⎦⎥⎥⎥, etc. by mapping the four basis vectors to the standard basis of R4. And, the unitary transformations U can be written as 4×4 matrices which satisfy the property UU†=U†U=I.