TL: DR; Seu código já está correto e "limpo".
Vejo muitas pessoas questionando a resposta, mas todo mundo está sentindo falta da floresta entre as árvores. Vamos fazer a análise completa da ciência da computação e matemática para entender completamente esta questão.
Primeiro, observamos que temos 3 variáveis, cada uma com 3 estados: <, = ou>. O número total de permutações é 3 ^ 3 = 27 estados, aos quais atribuirei um número único, denotado P #, para cada estado. Esse número P # é um sistema de números fatoriais .
Enumerando todas as permutações que temos:
a ? b | a ? c | b ? c |P#| State
------+-------+-------+--+------------
a < b | a < c | b < c | 0| C
a = b | a < c | b < c | 1| C
a > b | a < c | b < c | 2| C
a < b | a = c | b < c | 3| impossible a<b b<a
a = b | a = c | b < c | 4| impossible a<a
a > b | a = c | b < c | 5| A=C > B
a < b | a > c | b < c | 6| impossible a<c a>c
a = b | a > c | b < c | 7| impossible a<c a>c
a > b | a > c | b < c | 8| A
a < b | a < c | b = c | 9| B=C > A
a = b | a < c | b = c |10| impossible a<a
a > b | a < c | b = c |11| impossible a<c a>c
a < b | a = c | b = c |12| impossible a<a
a = b | a = c | b = c |13| A=B=C
a > b | a = c | b = c |14| impossible a>a
a < b | a > c | b = c |15| impossible a<c a>c
a = b | a > c | b = c |16| impossible a>a
a > b | a > c | b = c |17| A
a < b | a < c | b > c |18| B
a = b | a < c | b > c |19| impossible b<c b>c
a > b | a < c | b > c |20| impossible a<c a>c
a < b | a = c | b > c |21| B
a = b | a = c | b > c |22| impossible a>a
a > b | a = c | b > c |23| impossible c>b b>c
a < b | a > c | b > c |24| B
a = b | a > c | b > c |25| A=B > C
a > b | a > c | b > c |26| A
Por inspeção, vemos que temos:
- 3 estados em que A é o máximo,
- 3 estados onde B é o máximo,
- 3 estados onde C é o máximo e
- 4 estados em que A = B ou B = C.
Vamos escrever um programa (veja a nota de rodapé) para enumerar todas essas permutações com valores para A, B e C. Classificação estável por P #:
a ?? b | a ?? c | b ?? c |P#| State
1 < 2 | 1 < 3 | 2 < 3 | 0| C
1 == 1 | 1 < 2 | 1 < 2 | 1| C
1 == 1 | 1 < 3 | 1 < 3 | 1| C
2 == 2 | 2 < 3 | 2 < 3 | 1| C
2 > 1 | 2 < 3 | 1 < 3 | 2| C
2 > 1 | 2 == 2 | 1 < 2 | 5| ??
3 > 1 | 3 == 3 | 1 < 3 | 5| ??
3 > 2 | 3 == 3 | 2 < 3 | 5| ??
3 > 1 | 3 > 2 | 1 < 2 | 8| A
1 < 2 | 1 < 2 | 2 == 2 | 9| ??
1 < 3 | 1 < 3 | 3 == 3 | 9| ??
2 < 3 | 2 < 3 | 3 == 3 | 9| ??
1 == 1 | 1 == 1 | 1 == 1 |13| ??
2 == 2 | 2 == 2 | 2 == 2 |13| ??
3 == 3 | 3 == 3 | 3 == 3 |13| ??
2 > 1 | 2 > 1 | 1 == 1 |17| A
3 > 1 | 3 > 1 | 1 == 1 |17| A
3 > 2 | 3 > 2 | 2 == 2 |17| A
1 < 3 | 1 < 2 | 3 > 2 |18| B
1 < 2 | 1 == 1 | 2 > 1 |21| B
1 < 3 | 1 == 1 | 3 > 1 |21| B
2 < 3 | 2 == 2 | 3 > 2 |21| B
2 < 3 | 2 > 1 | 3 > 1 |24| B
2 == 2 | 2 > 1 | 2 > 1 |25| ??
3 == 3 | 3 > 1 | 3 > 1 |25| ??
3 == 3 | 3 > 2 | 3 > 2 |25| ??
3 > 2 | 3 > 1 | 2 > 1 |26| A
Caso você estivesse se perguntando como eu sabia quais estados P # eram impossíveis, agora você sabe. :-)
O número mínimo de comparações para determinar a ordem é:
Log2 (27) = Log (27) / Log (2) = ~ 4,75 = 5 comparações
isto é, o coredump deu o número mínimo correto de 5 comparações. Eu formataria seu código como:
status_t index_of_max_3(a,b,c)
{
if (a > b) {
if (a == c) return DONT_KNOW; // max a or c
if (a > c) return MOSTLY_A ;
else return MOSTLY_C ;
} else {
if (a == b) return DONT_KNOW; // max a or b
if (b > c) return MOSTLY_B ;
else return MOSTLY_C ;
}
}
Para o seu problema, não nos preocupamos em testar a igualdade, para que possamos omitir dois testes.
Não importa o quão limpo / ruim o código seja, se ele receber a resposta errada, é um bom sinal de que você está lidando com todos os casos corretamente!
Em seguida, quanto à simplicidade, as pessoas continuam tentando "melhorar" a resposta, onde pensam que melhorar significa "otimizar" o número de comparações, mas isso não é exatamente o que você está perguntando. Você confundiu todo mundo onde perguntou "Sinto que pode haver um melhor", mas não definiu o que "melhor" significa. Menos comparações? Menos código? Comparações ótimas?
Agora, como você está perguntando sobre a legibilidade do código (dada a correção), eu faria apenas uma alteração no seu código para facilitar a leitura: Alinhe o primeiro teste com os outros.
if (a > b && a > c)
status = MOSTLY_A;
else if (b > a && b > c)
status = MOSTLY_B;
else if (c > a && c > b)
status = MOSTLY_C;
else
status = DONT_KNOW; // a=b or b=c, we don't care
Pessoalmente, eu escreveria da seguinte maneira, mas isso pode ser pouco ortodoxo para seus padrões de codificação:
if (a > b && a > c) status = MOSTLY_A ;
else if (b > a && b > c) status = MOSTLY_B ;
else if (c > a && c > b) status = MOSTLY_C ;
else /* a==b || b ==c*/status = DONT_KNOW; // a=b or b=c, we don't care
Nota de rodapé: Aqui está o código C ++ para gerar as permutações:
#include <stdio.h>
char txt[] = "< == > ";
enum cmp { LESS, EQUAL, GREATER };
int val[3] = { 1, 2, 3 };
enum state { DONT_KNOW, MOSTLY_A, MOSTLY_B, MOSTLY_C };
char descr[]= "??A B C ";
cmp Compare( int x, int y ) {
if( x < y ) return LESS;
if( x > y ) return GREATER;
/* x==y */ return EQUAL;
}
int main() {
int i, j, k;
int a, b, c;
printf( "a ?? b | a ?? c | b ?? c |P#| State\n" );
for( i = 0; i < 3; i++ ) {
a = val[ i ];
for( j = 0; j < 3; j++ ) {
b = val[ j ];
for( k = 0; k < 3; k++ ) {
c = val[ k ];
int cmpAB = Compare( a, b );
int cmpAC = Compare( a, c );
int cmpBC = Compare( b, c );
int n = (cmpBC * 9) + (cmpAC * 3) + cmpAB; // Reconstruct unique P#
printf( "%d %c%c %d | %d %c%c %d | %d %c%c %d |%2d| "
, a, txt[cmpAB*2+0], txt[cmpAB*2+1], b
, a, txt[cmpAC*2+0], txt[cmpAC*2+1], c
, b, txt[cmpBC*2+0], txt[cmpBC*2+1], c
, n
);
int status;
if (a > b && a > c) status = MOSTLY_A;
else if (b > a && b > c) status = MOSTLY_B;
else if (c > a && c > b) status = MOSTLY_C;
else /* a ==b || b== c*/status = DONT_KNOW; // a=b, or b=c
printf( "%c%c\n", descr[status*2+0], descr[status*2+1] );
}
}
}
return 0;
}
Edições: com base no feedback, moveu TL: DR para o topo, removeu a tabela não classificada, esclareceu 27, limpou o código, descreveu estados impossíveis.