Estou ajustando uma regressão no . É válido retroceder estimativas de ponto de transformação (e intervalos de confiança / previsão) por exponenciação? Eu não acredito nisso, já que E [ f ( X ) ] ≠ f ( E [ X ] ), mas queria a opinião dos outros.
Meu exemplo abaixo mostra conflitos com a transformação traseira (.239 vs .219).
set.seed(123)
a=-5
b=2
x=runif(100,0,1)
y=exp(a*x+b+rnorm(100,0,.2))
# plot(x,y)
### NLS Fit
f <- function(x,a,b) {exp(a*x+b)}
fit <- nls(y ~ exp(a*x+b), start = c(a=-10, b=15))
co=coef(fit)
# curve(f(x=x, a=co[1], b=co[2]), add = TRUE,col=2,lwd=1.2)
predict(fit,newdata=data.frame(x=.7))
[1] 0.2393773
### LM Fit
# plot(x,log(y))
# abline(lm(log(y)~x),col=2)
fit=lm(log(y)~x)
temp=predict(fit,newdata=data.frame(x=.7),interval='prediction')
exp(temp)
fit lwr upr
1 0.2199471 0.1492762 0.3240752