Probabilidade marginal da produção de Gibbs


13

Estou reproduzindo do zero os resultados na Seção 4.2.1 de

Probabilidade marginal da produção de Gibbs

Siddhartha Chib

Jornal da Associação Estatística Americana, vol. 90, No. 432. (Dec., 1995), pp. 1313-1321.

É uma mistura de modelos normais com o número conhecido de componentes. k1

f(xW,μ,σ2)=Eu=1nj=1kN(xEuμj,σj2).()

O amostrador Gibbs para este modelo é implementado usando a técnica de aumento de dados de Tanner e Wong. Um conjunto de variáveis de atribuição assumindo os valores é introduzido, e que especificam que e f (x_i \ meados z , \ mu, \ sigma ^ 2) = \ mathrm {N} (x_i \ mid \ mu_ {z_i}, \ sigma ^ 2_ {z_i}) . Daqui resulta que a integração sobre os z_i 's fornece a probabilidade original (*) .1 , ... , k Pr ( z i = j | w ) = w j f ( x i | z , μ , σ 2 ) = N ( x i | μ z i , σ 2 z i )z=(z1,,zn)1,...,kPr(zEu=jW)=Wjf(xEuz,μ,σ2)=N(xEuμzEu,σzEu2) ( )zEu()

O conjunto de dados é formado por velocidades de 82 galáxias da constelação de Corona Borealis.

set.seed(1701)

x <- c(  9.172,  9.350,  9.483,  9.558,  9.775, 10.227, 10.406, 16.084, 16.170, 18.419, 18.552, 18.600, 18.927,
        19.052, 19.070, 19.330, 19.343, 19.349, 19.440, 19.473, 19.529, 19.541, 19.547, 19.663, 19.846, 19.856,
        19.863, 19.914, 19.918, 19.973, 19.989, 20.166, 20.175, 20.179, 20.196, 20.215, 20.221, 20.415, 20.629,
        20.795, 20.821, 20.846, 20.875, 20.986, 21.137, 21.492, 21.701, 21.814, 21.921, 21.960, 22.185, 22.209,
        22.242, 22.249, 22.314, 22.374, 22.495, 22.746, 22.747, 22.888, 22.914, 23.206, 23.241, 23.263, 23.484,
        23.538, 23.542, 23.666, 23.706, 23.711, 24.129, 24.285, 24.289, 24.366, 24.717, 24.990, 25.633, 26.960,
        26.995, 32.065, 32.789, 34.279 )

nn <- length(x)

Assumimos que , os e os são independentes a priori com μ j σ 2 j ( w 1 , , w k ) D i r ( a 1 , , a k )Wμjσj2

(W1,...,Wk)DEur(uma1,...,umak),μjN(μ0 0,σ0 02),σj2EuG(ν0 02,δ0 02).
k <- 3

mu0 <- 20
va0 <- 100

nu0 <- 6
de0 <- 40

a <- rep(1, k)

Usando o Teorema de Bayes, as condicionais completas são em que com

Wμ,σ2,z,xDEur(uma1+n1,...,umak+nk)μjW,σ2,z,xN(njmjσ0 02+μ0 0σj2njσ0 02+σj2,σ0 02σj2njσ0 02+σj2)σj2W,μ,z,xEuG(ν0 0+nj2,δ0 0+δj2)Pr(zEu=jW,μ,σ2,x)Wj×1σje-(xEu-μj)2/2σj2
nj=|euj|,mj={1njEueujxEuEufnj>0 00 0otherWEuse.,δj=Eueuj(xEu-μj)2,
euj={Eu{1,...,n}:zEu=j} .

O objetivo é calcular uma estimativa para a probabilidade marginal do modelo. O método de Chib começa com uma primeira execução do amostrador de Gibbs usando os condicionais completos.

burn_in <- 1000
run     <- 15000

cat("First Gibbs run (full):\n")

N <- burn_in + run

w  <- matrix(1, nrow = N, ncol = k)
mu <- matrix(0, nrow = N, ncol = k)
va <- matrix(1, nrow = N, ncol = k)
z  <- matrix(1, nrow = N, ncol = nn)

n <- integer(k)
m <- numeric(k)
de <- numeric(k)

rdirichlet <- function(a) { y <- rgamma(length(a), a, 1); y / sum(y) }

pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
    n <- tabulate(z[t-1,], nbins = k)
    w[t,] <- rdirichlet(a + n)
    m <- sapply(1:k, function(j) sum(x[z[t-1,]==j]))
    m[n > 0] <- m[n > 0] / n[n > 0]
    mu[t,] <- rnorm(k, mean = (n*m*va0+mu0*va[t-1,])/(n*va0+va[t-1,]), sd = sqrt(va0*va[t-1,]/(n*va0+va[t-1,])))
    de <- sapply(1:k, function(j) sum((x[z[t-1,]==j] - mu[t,j])^2))
    va[t,] <- 1 / rgamma(k, shape = (nu0+n)/2, rate = (de0+de)/2)
    z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mu[t,], sd = sqrt(va[t,]), log = TRUE))))
    setTxtProgressBar(pb, t)
}
close(pb)

A partir desta primeira execução, obtemos um ponto aproximado de probabilidade máxima. Como a probabilidade é realmente ilimitada, o que esse procedimento provavelmente fornece é um MAP local aproximado.(W,μ,σ2)

w  <- w[(burn_in+1):N,]
mu <- mu[(burn_in+1):N,]
va <- va[(burn_in+1):N,]
z  <- z[(burn_in+1):N,]
N  <- N - burn_in

log_L <- function(x, w, mu, va) sum(log(sapply(1:nn, function(i) sum(exp(log(w) + dnorm(x[i], mean = mu, sd = sqrt(va), log = TRUE))))))

ts <- which.max(sapply(1:N, function(t) log_L(x, w[t,], mu[t,], va[t,])))

ws <- w[ts,]
mus <- mu[ts,]
vas <- va[ts,]

A estimativa logarítmica de Chib da probabilidade marginal é

registrof(x)^=registroeux(W,μ,σ2)+registroπ(W,μ,σ2)-registroπ(μx)-registroπ(σ2μ,x)-registroπ(Wμ,σ2,x).

Já temos os dois primeiros termos.

log_prior <- function(w, mu, va) {
    lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w))
    + sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE))
    + sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}

chib <- log_L(x, ws, mus, vas) + log_prior(ws, mus, vas)

A estimativa Rao-Blackwellized de é e é facilmente obtido desde a primeira corrida de Gibbs.π(μx)

π(μx)=j=1kN(μj|njmjσ0 02+μ0 0σj2njσ0 02+σj2,σ0 02σj2njσ0 02+σj2)p(σ2,zx)dσ2dz,
pi.mu_va.z.x <- function(mu, va, z) {
    n <- tabulate(z, nbins = k)
    m <- sapply(1:k, function(j) sum(x[z==j]))
    m[n > 0] <- m[n > 0] / n[n > 0]
    exp(sum(dnorm(mu, mean = (n*m*va0+mu0*va)/(n*va0+va), sd = sqrt(va0*va/(n*va0+va)), log = TRUE)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.mu_va.z.x(mus, va[t,], z[t,]))))

A estimativa Rao-Blackwellized de é e é calculado a partir de uma segunda execução reduzida de Gibbs na qual os não são atualizados, mas são feitos igual a em cada etapa da iteração.π(σ2μ,x)

π(σ2μ,x)=j=1kEuG(σj2|ν0 0+nj2,δ0 0+δj2)p(zμ,x)dz,
μjμj
cat("Second Gibbs run (reduced):\n")

N <- burn_in + run

w  <- matrix(1, nrow = N, ncol = k)
va <- matrix(1, nrow = N, ncol = k)
z  <- matrix(1, nrow = N, ncol = nn) 

pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
    n <- tabulate(z[t-1,], nbins = k)
    w[t,] <- rdirichlet(a + n)
    de <- sapply(1:k, function(j) sum((x[z[t-1,]==j] - mus[j])^2))
    va[t,] <- 1 / rgamma(k, shape = (nu0+n)/2, rate = (de0+de)/2)
    z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mus, sd = sqrt(va[t,]), log = TRUE))))
    setTxtProgressBar(pb, t)
}
close(pb)

w  <- w[(burn_in+1):N,]
va <- va[(burn_in+1):N,]
z  <- z[(burn_in+1):N,]
N  <- N - burn_in

pi.va_mu.z.x <- function(va, mu, z) {
    n <- tabulate(z, nbins = k)         
    de <- sapply(1:k, function(j) sum((x[z==j] - mu[j])^2))
    exp(sum(((nu0+n)/2)*log((de0+de)/2) - lgamma((nu0+n)/2) - ((nu0+n)/2+1)*log(va) - (de0+de)/(2*va)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.va_mu.z.x(vas, mus, z[t,]))))

Do mesmo modo, a estimativa Rao-Blackwellized de é e é calculado a partir de uma terceira execução de Gibbs reduzida, na qual os e não são atualizados, mas são iguais a e respectivamente em cada etapa da iteração.π(Wμ,σ2,x)

π(Wμ,σ2,x)=DEur(Wuma1+n1,...,umak+nk)p(zμ,σ2,x)dz,
μjσj2μjσj2
cat("Third Gibbs run (reduced):\n")

N <- burn_in + run

w  <- matrix(1, nrow = N, ncol = k)
z  <- matrix(1, nrow = N, ncol = nn) 

pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
    n <- tabulate(z[t-1,], nbins = k)
    w[t,] <- rdirichlet(a + n)
    z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mus, sd = sqrt(vas), log = TRUE))))
    setTxtProgressBar(pb, t)
}
close(pb)

w  <- w[(burn_in+1):N,]
z  <- z[(burn_in+1):N,]
N  <- N - burn_in

pi.w_z.x <- function(w, z) {
    n <- tabulate(z, nbins = k)
    exp(lgamma(sum(a+n)) - sum(lgamma(a+n)) + sum((a+n-1)*log(w)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.w_z.x(ws, z[t,]))))

Depois de tudo isso, obtemos uma estimativa de log que é maior que a relatada por Chib: com erro de Monte Carlo .-217.9199-224.138.086

Para verificar se eu de alguma forma errei nos samplers Gibbs, reimplementei tudo usando o RJAGS. O código a seguir fornece os mesmos resultados.

x <- c( 9.172,  9.350,  9.483,  9.558,  9.775, 10.227, 10.406, 16.084, 16.170, 18.419, 18.552, 18.600, 18.927, 19.052, 19.070, 19.330,
       19.343, 19.349, 19.440, 19.473, 19.529, 19.541, 19.547, 19.663, 19.846, 19.856, 19.863, 19.914, 19.918, 19.973, 19.989, 20.166,
       20.175, 20.179, 20.196, 20.215, 20.221, 20.415, 20.629, 20.795, 20.821, 20.846, 20.875, 20.986, 21.137, 21.492, 21.701, 21.814,
       21.921, 21.960, 22.185, 22.209, 22.242, 22.249, 22.314, 22.374, 22.495, 22.746, 22.747, 22.888, 22.914, 23.206, 23.241, 23.263,
       23.484, 23.538, 23.542, 23.666, 23.706, 23.711, 24.129, 24.285, 24.289, 24.366, 24.717, 24.990, 25.633, 26.960, 26.995, 32.065,
       32.789, 34.279 )

library(rjags)

nn <- length(x)

k <- 3

mu0 <- 20
va0 <- 100

nu0 <- 6
de0 <- 40

a <- rep(1, k)

burn_in <- 10^3

N <- 10^4

full <- "
    model {
        for (i in 1:n) {
            x[i] ~ dnorm(mu[z[i]], tau[z[i]])
            z[i] ~ dcat(w[])
        }
        for (i in 1:k) {
            mu[i] ~ dnorm(mu0, 1/va0)
            tau[i] ~ dgamma(nu0/2, de0/2)
            va[i] <- 1/tau[i]
        }
        w ~ ddirich(a)
    }
"
data <- list(x = x, n = nn, k = k, mu0 = mu0, va0 = va0, nu0 = nu0, de0 = de0, a = a)
model <- jags.model(textConnection(full), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("mu", "va", "w", "z"), n.iter = N)

mu <- matrix(samples$mu, nrow = N, byrow = TRUE)
    va <- matrix(samples$va, nrow = N, byrow = TRUE)
w <- matrix(samples$w, nrow = N, byrow = TRUE)
    z <- matrix(samples$z, nrow = N, byrow = TRUE)

log_L <- function(x, w, mu, va) sum(log(sapply(1:nn, function(i) sum(exp(log(w) + dnorm(x[i], mean = mu, sd = sqrt(va), log = TRUE))))))

ts <- which.max(sapply(1:N, function(t) log_L(x, w[t,], mu[t,], va[t,])))

ws <- w[ts,]
mus <- mu[ts,]
vas <- va[ts,]

log_prior <- function(w, mu, va) {
    lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w))
    + sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE))
    + sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}

chib <- log_L(x, ws, mus, vas) + log_prior(ws, mus, vas)

cat("log-likelihood + log-prior =", chib, "\n")

pi.mu_va.z.x <- function(mu, va, z, x) {
    n <- sapply(1:k, function(j) sum(z==j))
    m <- sapply(1:k, function(j) sum(x[z==j]))
    m[n > 0] <- m[n > 0] / n[n > 0]
    exp(sum(dnorm(mu, mean = (n*m*va0+mu0*va)/(n*va0+va), sd = sqrt(va0*va/(n*va0+va)), log = TRUE)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.mu_va.z.x(mus, va[t,], z[t,], x))))

cat("log-likelihood + log-prior - log-pi.mu_ =", chib, "\n")

fixed.mu <- "
    model {
        for (i in 1:n) {
            x[i] ~ dnorm(mus[z[i]], tau[z[i]])
            z[i] ~ dcat(w[])
        }
        for (i in 1:k) {
            tau[i] ~ dgamma(nu0/2, de0/2)
            va[i] <- 1/tau[i]
        }
        w ~ ddirich(a)
    }
"
data <- list(x = x, n = nn, k = k, nu0 = nu0, de0 = de0, a = a, mus = mus)
model <- jags.model(textConnection(fixed.mu), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("va", "w", "z"), n.iter = N)

va <- matrix(samples$va, nrow = N, byrow = TRUE)
    w <- matrix(samples$w, nrow = N, byrow = TRUE)
z <- matrix(samples$z, nrow = N, byrow = TRUE)

pi.va_mu.z.x <- function(va, mu, z, x) {
    n <- sapply(1:k, function(j) sum(z==j))
    de <- sapply(1:k, function(j) sum((x[z==j] - mu[j])^2))
    exp(sum(((nu0+n)/2)*log((de0+de)/2) - lgamma((nu0+n)/2) - ((nu0+n)/2+1)*log(va) - (de0+de)/(2*va)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.va_mu.z.x(vas, mus, z[t,], x))))

cat("log-likelihood + log-prior - log-pi.mu_ - log-pi.va_ =", chib, "\n")

fixed.mu.and.va <- "
    model {
        for (i in 1:n) {
            x[i] ~ dnorm(mus[z[i]], 1/vas[z[i]])
            z[i] ~ dcat(w[])
        }
        w ~ ddirich(a)
    }
"
data <- list(x = x, n = nn, a = a, mus = mus, vas = vas)
model <- jags.model(textConnection(fixed.mu.and.va), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("w", "z"), n.iter = N)

w <- matrix(samples$w, nrow = N, byrow = TRUE)
    z <- matrix(samples$z, nrow = N, byrow = TRUE)

pi.w_z.x <- function(w, z, x) {
    n <- sapply(1:k, function(j) sum(z==j))
    exp(lgamma(sum(a)+nn) - sum(lgamma(a+n)) + sum((a+n-1)*log(w)))
}

chib <- chib - log(mean(sapply(1:N, function(t) pi.w_z.x(ws, z[t,], x))))

cat("log-likelihood + log-prior - log-pi.mu_ - log-pi.va_ - log-pi.w_ =", chib, "\n")

Minha pergunta é se na descrição acima há algum mal-entendido sobre o método de Chib ou algum erro em sua implementação.


1
Executando a simulação 100 vezes, os resultados estão no intervalo . [-218.7655;-216,8824]
Zen

Respostas:


6

Há um pequeno erro de programação no anterior

log_prior <- function(w, mu, va) {
    lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w))
    + sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE))
    + sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}

como deveria ser

log_prior <- function(w, mu, va) {
    lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w)) +
      sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE)) +
      sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}

Executar novamente o código dessa maneira leva a

> chib
[1] -228.194

que não é o valor produzido em Chib (1995) para esse caso! No entanto, na reanálise de Neal (1999) do problema, ele menciona que

De acordo com um árbitro anônimo da JASA, a figura de -224.138 para o log da probabilidade marginal do modelo de três componentes com variações desiguais que foi dada no artigo de Chib é um "erro de digitação", com a figura correta sendo -228.608.

Portanto, isso resolve o problema de discrepância.


2
Christian Robert e Kate Lee: você sabe o quão bom você é?
Zen

2
A propósito, este é definitivamente um exemplo de "sintaxe maligna". Eu não vou esquecer este.
Zen
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.