Derivação da região posterior normal-Wishart


11

Estou trabalhando na derivação de um posterior Normal-Wishart, mas estou preso em um dos parâmetros (o posterior da matriz de escala, veja na parte inferior).

Apenas por contexto e integridade, aqui está o modelo e o restante das derivações:

xiN(μ,Λ)μN(μ0,(κ0Λ)1)ΛW(υ0,W0)

As formas expandidas de cada um dos três fatores é (até uma constante de proporcionalidade) são:

  • Probabilidade:

    N(xi|μ,Λ)|Λ|N/2exp(12i=1N(xiTΛxi2μTΛxi+μTΛμ))
  • Normal anterior:

    N(μ|(μ0,κ0Λ)1)|Λ|1/2exp(12(μTκ0Λμ2μTκ0Λμ0+μ0Tκ0Λμ0))
  • Wishart anterior:

    W(Λ|υ0,W0)|Λ|υ0D12exp(12tr(W01Λ))

Queremos o Normal-Wishart posterior ( ) que pode ser decomposto como bem como :μ,Λ|μ,κ,υ,WN(μ|μ,κΛ)W(Λ|υ,W)

Degress of freedomυ

Ao mesclar os primeiros fatores da probabilidade e o Wishart, obtemos o primeiro fator do fator Wishart no posterior: e, portanto, temos o primeiro parâmetro do posterior:

|Λ|υ0+ND12
υ=υ0+N

Fator de escalaκ

Identificamos os elementos cercados por e para descobrir quem o é atualizado pela probabilidade: e, portanto, obtemos o segundo parâmetro: μTμκ0Λ

μT((κ0+N)Λ)μ
κ=κ0+N

Significaμ

O terceiro parâmetro vem da identificação do que está dentro de : E, portanto, obtivemos o terceiro parâmetro: 2μT...

2μT(ΛNx¯+κ0Λμ0)=2μTκΛμ(ΛNx¯+κ0Λμ0)=κΛμ(Nx¯+κ0μ0)=κμ
μ=1k(Nx¯+κ0μ0)

Matriz de escalaW

E o quarto parâmetro vem do trabalho nos parâmetros restantes:

tr(W1Λ)=tr(W01Λ)+i=1NxiTΛxi+μ0Tκ0Λμ0=tr(W01Λ)+i=1Ntr(xiTΛxi)+tr(μ0Tκ0Λμ0)=tr(W01Λ+i=1NxiTΛxi+μ0Tκ0Λμ0)

Como prosseguir a partir daqui (se não cometi erros até agora) e obter a solução padrão para ?W

Editar 1 :

Agora reorganizamos os termos, adicionamos e subtraímos alguns fatores para obter dois quadrados, como na solução padrão:

tr(W1Λ)=tr(W1Λ+i=1N(xiTΛxi+x¯TΛx¯2xiTΛx¯)+κ0(μ0TΛμ0+x¯TΛx¯2x¯TΛμ0)i=1Nx¯TΛx¯+2i=1NxiTΛx¯κ0x¯TΛx¯+2κ0x¯TΛμ0)=tr(W1Λ+i=1N(xix¯)Λ(xix¯)T+κ0(x¯μ0)Λ(x¯μ0)TNx¯Λx¯T+2Nx¯Λx¯Tκ0x¯Λx¯T+2κ0x¯Λμ0T)

Simplificamos os fatores que permanecem fora dos quadrados:

tr(W1Λ)=tr(W1Λ+i=1N(xix¯)TΛ(xix¯)+κ0(x¯μ0)TΛ(x¯μ0)+(Nκ0)x¯TΛx¯+2κ0x¯TΛμ0)

Edição 2 ( acompanhamento graças à resposta de @bdeonovic )

O traço é cíclico, então . Então: e depois: tr(ABC)=tr(BCA)=tr(CAB)

tr(W1Λ)=tr(W1Λ+i=1N(xix¯)(xix¯)TΛ+κ0(x¯μ0)(x¯μ0)TΛ+(Nκ0)x¯x¯TΛ+2κ0x¯μ0TΛ)
tr(W1)=tr(W1+i=1N(xix¯)(xix¯)T+κ0(x¯μ0)(x¯μ0)T+(Nκ0)x¯x¯T+2κ0x¯μ0T)

Quase! Mas ainda não está lá. O objetivo é:

W1+i=1N(xix¯)(xix¯)T+κ0Nκ0+N(x¯μ0)(x¯μ0)T

Respostas:


4

O traço é cíclico, então . Além disso, o traço é distribuído por adição, de modo que . Com esses fatos, você poderá alternar o termo para trás nos termos de rastreamento, combinar os termos de rastreamento. O resultado deve ser algo comotr(ABC)=tr(BCA)=tr(CAB)tr(A+B)=tr(A)+tr(B)Λ

W1=W1+i=1Nxixi+μ0μ0

obrigado! ainda não vejo como chegar a partir dos resultados padrão ( en.wikipedia.org/wiki/Conjugate_prior ) que contêm e . Eu nem tenho sinais negativos: O(xix¯)x¯μ0
alberto

3

A probabilidade anterior é ×

|Λ|N/2exp{12(i=1NxiTΛxiNx¯TΛμμTΛNx¯+NμTΛμ)}×|Λ|(ν0D1)/2exp{12tr(W01Λ)}×|Λ|1/2exp{κ02(μTΛμμTΛμ0μ0TΛμ+μ0TΛμ0)}.
Isso pode ser reescrito como Podemos reescrever
|Λ|1/2|Λ|(ν0+ND1)/2×exp{12((κ0+N)μTΛμμTΛ(κ0μ0+Nx¯)(κ0μ0+Nx¯)TΛμ+κ0μ0TΛμ0+i=1NxiTΛxi+tr(W01Λ))}
(κ0+N)μTΛμμTΛ(κ0μ0+Nx¯)(κ0μ0+Nx¯)TΛμ+κ0μ0TΛμ0+i=1NxiTΛxi+tr(W01Λ)
seguinte forma, adicionando e subtraindo um termo:
(κ0+N)μTΛμμTΛ(κ0μ0+Nx¯)(κ0μ0+Nx¯)TΛμ+1κ0+N(κ0μ0+Nx¯)TΛ(κ0μ0+Nx¯)1κ0+N(κ0μ0+Nx¯)TΛ(κ0μ0+Nx¯)+κ0μ0TΛμ0+i=1NxiTΛxi+tr(W01Λ).
As duas principais linhas agora fatoram como
(κ0+N)(μκ0μ+Nx¯κ0+N)TΛ(μκ0μ+Nx¯κ0+N).

Adicionando e subtraindo , o seguinte: pode ser reescrito como Nx¯TΛx¯

1κ0+N(κ0μ0+Nx¯)TΛ(κ0μ0+Nx¯)+κ0μ0TΛμ0+i=1NxiTΛxi+tr(W01Λ)
i=1N(xiTΛxixiTΛx¯x¯TΛxi+x¯TΛx¯)+Nx¯TΛx¯+κ0μ0TΛμ01κ0+N(κ0μ0+Nx¯)TΛ(κ0μ0+Nx¯)+tr(W01Λ).
O termo da soma
i=1N(xiTΛxixiTΛx¯x¯TΛxi+x¯TΛx¯)
é igual a Agora pode ser expandido como
i=1N(xix¯)TΛ(xix¯).
Nx¯TΛx¯+κ0μ0TΛμ01κ0+N(κ0μ0+Nx¯)TΛ(κ0μ0+Nx¯)
Nx¯TΛx¯+κ0μ0TΛμ01κ0+N(κ02μ0TΛμ0+Nκ0μ0TΛx¯0+Nκ0x¯TΛμ0+N2x¯TΛx¯),
que é igual a
Nκ0κ0+N(x¯TΛx¯x¯TΛμ0μ0TΛx¯+μ0TΛμ0)=Nκ0κ0+N(x¯μ0)TΛ(x¯μ0).

Os dois termos a seguir são escalares: E qualquer escalar é igual ao seu rastreamento, então

i=1N(xix¯)TΛ(xix¯),Nκ0κ0+N(x¯μ0)TΛ(x¯μ0).
tr(W01Λ)+i=1N(xix¯)TΛ(xix¯)+Nκ0κ0+N(x¯μ0)TΛ(x¯μ0)
pode ser reescrito como Como , a soma acima é igual a
tr(W01Λ)+tr(i=1N(xix¯)TΛ(xix¯))+tr(Nκ0κ0+N(x¯μ0)TΛ(x¯μ0)).
tr(ABC)=tr(CAB)
tr(W01Λ)+tr(i=1N(xix¯)(xix¯)TΛ)+tr(Nκ0κ0+N(x¯μ0)(x¯μ0)TΛ).
Usando o fato de que , podemos reescrever a soma como tr(A+B)=tr(A)+tr(B)
tr(W01Λ+i=1N(xix¯)(xix¯)TΛ+Nκ0κ0+N(x¯μ0)(x¯μ0)TΛ)=tr((W01+i=1N(xix¯)(xix¯)T+Nκ0κ0+N(x¯μ0)(x¯μ0)T)Λ).

Juntando tudo isso, se deixarmos Temos que a probabilidade anterior seja igual a S=i=1N(xix¯)(xix¯)T×

|Λ|1/2exp{κ0+N2(μκ0μ+Nx¯κ0+N)TΛ(μκ0μ+Nx¯κ0+N)}×|Λ|(ν0+ND1)/2exp{12tr((W01+S+Nκ0κ0+N(x¯μ0)(x¯μ0)T)Λ)},
conforme necessário.
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.