Se é distribuído , é distribuído e , eu sei que é distribuído se X e Y forem independentes.
Mas o que aconteceria se X e Y não fossem independentes, ou seja,
Isso afetaria como a soma é distribuída?
Se é distribuído , é distribuído e , eu sei que é distribuído se X e Y forem independentes.
Mas o que aconteceria se X e Y não fossem independentes, ou seja,
Isso afetaria como a soma é distribuída?
Respostas:
See my comment on probabilityislogic's answer to this question. Here,
@dilip's answer is sufficient, but I just thought I'd add some details on how you get to the result. We can use the method of characteristic functions. For any -dimensional multivariate normal distribution where and , the characteristic function is given by:
For a one-dimensional normal variable we get:
Now, suppose we define a new random variable . For your case, we have and . The characteristic function for is the basically the same as that for .
If we compare this characteristic function with the characteristic function we see that they are the same, but with being replaced by and with being replaced by . Hence because the characteristic function of is equivalent to the characteristic function of , the distributions must also be equal. Hence is normally distributed. We can simplify the expression for the variance by noting that and we get:
This is also the general formula for the variance of a linear combination of any set of random variables, independent or not, normal or not, where and . Now if we specialise to and , the above formula becomes: