Variação estatística em dois formatos de qualificação da Fórmula 1


15

Acabei de ler este artigo da BBC sobre o formato de qualificação na Fórmula 1.

Os organizadores desejam tornar a qualificação menos previsível, ou seja, aumentar a variação estatística no resultado. Desprezando alguns detalhes irrelevantes, no momento os pilotos são classificados pela melhor volta única de (por concretismo) duas tentativas.

Um chefe da F1, Jean Todt, propôs que classificar os pilotos na média de duas voltas aumentaria a variação estatística, já que os pilotos podem ter o dobro de probabilidade de cometer um erro. Outras fontes argumentaram que qualquer média certamente diminuiria a variação estatística.

Podemos dizer quem está certo sob suposições razoáveis? Suponho que tudo se reduz à variação relativa da mean(x,y) versus min(x,y) , onde x e y são variáveis ​​aleatórias que representam as duas voltas de um motorista?

Respostas:


5

Eu acho que depende da distribuição dos tempos da volta.

Seja X,Y independente, distribuído de forma idêntica.

  1. Se P(X=0)=P(X=1)=12 , entãoVar(X+Y2)=18<Var(min(X,Y))=316.
  2. Se, no entanto, , então V aP(X=0)=0.9,P(X=100)=0.1Var(X+Y2)=450>Var(min(X,Y))=99.

Isso está de acordo com o argumento mencionado na pergunta sobre cometer um erro (ou seja, executar um tempo excepcionalmente longo com uma pequena probabilidade). Assim, teríamos que saber a distribuição dos tempos das voltas para decidir.


Interessante, acho que algo assim também funciona para rvs contínuos. O que exatamente deu errado na prova anterior?
innisfree

11
Tanto quanto eu entendo, argumenta que, dado , a distância entre x e a média é sempre menor que a distância entre x e min ( x , y ) , portanto, a variação da média deve ser menor que a variação de min ( x , y ) . Isso, no entanto, não segue: min ( x , y )xyxxmin(x,y)min(x,y)min(x,y) pode permanecer consistentemente distante, enquanto a média varia muito. Se a prova fosse baseada em um cálculo real, seria mais fácil identificar o local exato em que ele deu errado (ou verifique se ele é válido depois de tudo).
Sandris

2

Sem perda de generalidade, suponha que e que ambas as variáveis ​​sejam retiradas da mesma distribuição com uma média e variância específicas.yx

melhora { x } ao,{y,x}{x}

caso 1, média: ,yx2

caso 2, min: .yx

Portanto, a média tem metade do efeito sobre a melhoria (que é impulsionada pela variação) do que a tomada do mínimo (para 2 tentativas). Ou seja, a média diminui a variabilidade.


Não estou convencido de que isso esteja correto. Você poderia fornecer uma explicação formal?
sandris

2

Aqui está a minha prova de Var [Média]

Para 2 variáveis ​​aleatórias x, y existe uma relação entre sua média e max e min.

2Mean(x,y)=Min(x,y)+Max(x,y)
4Var[Mean]=Var[Min]+Var[Max]+2Cov[Min,Max]
Var[Min(x,y)]=Var[Max(x,y)]
4Var[Mean]=2Var[Min]+2Cov[Min,Max]
and
Cov[Min,Max]<=sqrt(Var[Min]Var[Max])=Var[Min]
Therefore
Var[Mean]<=Var[Min]
It is also easy to see from this derivation that in order to reverse this inequality you need a distribution with very sharp truncation of the distribution on the negative side of the mean. For example for the exponential distribution the mean has a larger variance than the min.

1

Nice question, thank you! I agree with @sandris that distribution of lap times matters, but would like to emphasize that causal aspects of the question need to be addressed. My guess is that F1 wants to avoid a boring situation where the same team or driver dominates the sport year after year, and that they especially hope to introduce the (revenue-generating!) excitement of a real possibility that 'hot' new drivers can suddenly arise in the sport.

That is, my guess is that there is some hope to disrupt excessively stable rankings of teams/drivers. (Consider the analogy with raising the temperature in simulated annealing.) The question then becomes, what are the causal factors at work, and how are they distributed across the population of drivers/teams so as to create persistent advantage for current incumbents. (Consider the analogous question of levying high inheritance taxes to 'level the playing field' in society at large.)

Suppose incumbent teams are maintaining incumbency by a conservative strategy heavily dependent on driver experience, that emphasizes low variance in lap times at the expense of mean lap time. Suppose that by contrast the up-and-coming teams with (say) younger drivers, necessarily adopt a more aggressive (high-risk) strategy with larger variance, but that this involves some spectacular driving that sometimes 'hits it just right' and achieves a stunning lap time. Abstracting away from safety concerns, F1 would clearly like to see some such 'underdogs' in the race. In this causal scenario, it would seem that a best-of-n-laps policy (large n) would help give the upstarts a boost -- assuming that the experienced drivers are 'set in their ways', and so couldn't readily adapt their style to the new policy.

Suppose, on the other hand, that engine failure is an uncontrollable event with the same probability across all teams, and that the current rankings correctly reflect genuine gradation in driver/team quality across many other factors. In this case, the bad luck of an engine failure promises to be the lone 'leveling factor' that F1 could exploit to achieve greater equality of opportunity--at least without heavy-handed ranking manipulations that destroy the appearance of 'competition'. In this case, a policy that heavily penalizes engine failures (which are the only factor in this scenario not operating relatively in favor of the incumbents) promises to promote instability in rankings. In this case, the best-of-n policy mentioned above would be exactly the wrong policy to pursue.


0

I generally agree with other answers that the average of two runs will have a lower variance, but I believe they are leaving out important aspects underlying the problem. A lot has to do with how drivers react to the rules and their strategies for qualifying.

For instance, with only one lap to qualify, drivers would be more conservative, and therefore more predictable and more boring to watch. The idea with two laps is to allow the drivers to take chances on one to try to get that "perfect lap", with another available for a conservative run. More runs would use up a lot of time, which could also be boring. The current setup might just be the "sweet spot" to get the most action in the shortest time frame.

Also note that with an averaging approach, the driver needs to find the fastest repeatable lap time. With the min approach, the driver needs to drive as fast as possible for only one lap, probably pushing further than they would under the averaging approach.

This discussion is closer to game theory. Your question might get better answers when framed in that light. Then one could propose other techniques, like the option for a driver to drop the first lap time in favor of a second run, and possibly a faster or slower time. Etc.

Also note that a change in qualifying was attempted this year that generally pushed drivers into one conservative lap. https://en.wikipedia.org/wiki/2016_Formula_One_season#Qualifying The result was viewed as a disaster and quickly cancelled.

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.