Quais são as distribuições no quadrante k-dimensional positivo com matriz de covariância parametrizável?


12

Após a pergunta de zzk sobre seu problema com simulações negativas, estou me perguntando quais são as famílias parametrizadas de distribuições no quadrante k-dimensional positivo, R k +, para o qual a matriz de covariância Σ pode ser definida.R+kΣ

Como discutido com ZZK , partindo de uma distribuição em R+k e aplicando a transformar linear XΣ1/2(Xμ)+μ não funciona.

Respostas:


6

Suponha que tenhamos um vetor aleatório normal multivariado com μ R k e k × k matriz definida positiva simétrica de posição completa Σ = ( σ i j ) .

(logX1,,logXk)N(μ,Σ),
μRkk×kΣ=(σij)

Para o lognormal , não é difícil provar que m i : = E [ X i ] = e μ i + σ i i / 2(X1,,Xk)c i j : = Cov [ X i , X j ] = m i

mi:=E[Xi]=eμi+σii/2,i=1,,k,
cij:=Cov[Xi,Xj]=mimj(eσij1),i,j=1,,k,

e segue-se que .cij>mimj

Portanto, podemos fazer a pergunta inversa: dado e k × k matriz definida positiva simétrica C = ( c i j ) , satisfazendo c i j > - m i m j , se deixarmos μ i = log m i - 1m=(m1,,mk)R+kk×kC=(cij)cij>mimjσ i j = log ( c i j

μi=logmi12log(ciimi2+1),i=1,,k,
teremos um vetor lognormal com os meios e covariâncias prescritos.
σij=log(cijmimj+1),i,j=1,,k,

A restrição em e m é equivalente à condição natural E [ X i X j ] > 0 .CmE[XiXj]>0


Ótimo, Paulo! Você tem uma solução funcional e a condição adequada na matriz de covariância, que também responde a essa pergunta . Log-normais são mais úteis que gammas, no final.
Xian

3

Na verdade, tenho uma solução definitivamente para pedestres.

  1. Comece com e escolha os dois parâmetros para ajustar os valores de E [ X 1 ] , var ( X 1 ) .X1Ga(α11,β1)E[X1]var(X1)
  2. Tome e escolha os três parâmetros para ajustar os valores de E [ X 2 ] , var ( X 2 ) e cov ( X 1 , X 2 ) .X2|X1Ga(α21X1+α22,β2)E[X2]var(X2)cov(X1,X2)
  3. Tome e escolha os quatro parâmetros para ajustar os valores de E [ X 3 ] , var ( X 3 ) , cov ( X 1 , X 3 ) e cov ( X 2 , XX3|X1,X2Ga(α31X1+α32X2+α33,β3)E[X3]var(X3)cov(X1,X3) .cov(X2,X3)

e assim por diante ... No entanto, dadas as restrições sobre os parâmetros e a natureza não linear das equações de momento, pode ser que alguns conjuntos de momentos correspondam a nenhum conjunto aceitável de parâmetros.

Por exemplo, quando , termino com o sistema de equações β 1 = μ 1 / σ 2 1k=2

β1=μ1/σ12,α11μ1β1=0

α22=μ2β2α21μ1,α21=(σ12+μ1μ2μ2)σ12+μ12μ1β2
(σ12+μ1μ2μ2)2(σ12+μ12μ1)2σ12+μ2β2=σ22.
Running an R code with arbitrary (and a priori acceptable) values for μ and Σ led to many cases with no solution. Again, this does not mean much because correlation matrices for distributions on R+2 may have stronger restrictions that a mere positive determinant.

update (04/04): deinst rephrased this question as a new question on the math forum.


1
One way of slighly extending this is to consider the natural exponential family
f(X|θ)=h(x)eθTXA(θ).
Then the mean and covariance are the gradient and Hessian of A. If h is a polynomial (with real exponents > -1) then A is the log of a polynomial (with real exponents), and the variance and Hessian are rational functions. I think this gives enough freedom to represent any mean and covariance matrix.
deinst

@deinst: (+1) Do you have an example where this exponential family representation can be exploited straightforwardly?
Xi'an

2
Maybe I don't quite understand the problem. But, consider a bivariate random vector (X,Y) with the same marginal F with full support on R+ and having mean 0<μ<. How can such a bivariate distribution have correlation ρ close to -1, for example? Heuristically, though I haven't carried this out, it seems that if P(X>2μ)>0, then a contradiction regarding the support must arise. No?
cardinal

1
There are certainly constraints on the covariance matrix Σ when the support is R+k, covered via the Stieltjes moment condition. Anyway, I do not see why a correlation close to -1 is excluded a priori.
Xi'an

2
Right, this is related to what I was getting at. Regarding the correlation, consider my example. If X and Y have the same marginal F with mean μ and a correlation of exactly -1 and P(X>2μ)>0, what must the value of Y be for all such realizations of X? (+1 on both question and answer. I like this.)
cardinal

2

OK, this is a response to Xi'an's comment. It is too long and has to much TeX to be a comfortable comment. Caveat Lector: It is virtually certain that I have made an algebra mistake. This does not seem to be quite as flexible as I first thought.

Let us create a family of distributions in R+3 of the form

f(x|θ)=h(x)eθTxA(θ)
Let x=(x,y,z) and θ=(θ1,θ2,θ3). Let
h(x)=cx1e11x2e21x3e31+dx1f11x2f21x3f31
be a two term polynomial where ei,fi are real numbers greater than 0 for all i. Then we find that
A(θ)=log(cΓ(e1)θ1e1Γ(e2)θ2e2Γ(e3)θ3e3+dΓ(f1)θ1f1Γ(f2)θ2f2Γ(f3)θ3f3).

Now, for convenience let us define

c=cΓ(e1)Γ(e2)Γ(e2)θ1f1θ2f2θ3f3
and
d=dΓ(f1)Γ(f2)Γ(f2)θ1e1θ2e2θ3e3

Now, as the mean of our distribution is the gradient of A, we have μX=e1c+f1dθ1(c+d), μY=e2c+f2dθ2(c+d), and μZ=e3c+f3dθ3(c+d). And as the covariance is the Hessian of A, we have

σX2=(e1c+f1d)(c+d)+(e1f1)2cdθ12(c+d)2
and
Cov(X,Y)=(e1f1)(e2f2)cdθ1θ2(c+d)
(the other terms of the covariance matrix obtained by changing subscripts in the obvious way).

This does not seem to be quite enough flexibility to get any covariance matrix. I need to try another term in the polynomial (but I suspect that also may not work (obviously I need to think about this more)).


Four parameters (θ1,θ2,θ3,c) for five constraints...?
Xi'an

@xian There are the 6 exponents ei and fi as well.
deinst

Estou um pouco confuso: você não processou os expoentes como parâmetros da família exponencial. Mas, de fato, você pode alterar esses poderes conforme desejar para acertar as equações dos 9 momentos.
Xian

@Xi'an You are correct, I did not process them as parameters of the exponential family. Doing so would have made the family no longer a natural family, and including them would have just muddled the algebra for comuting the moment equations (which was muddled enough to begin with).
deinst
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.