Eu quero criar um modelo de regressão que seja uma média de vários modelos OLS, cada um com base em um subconjunto dos dados completos. A idéia por trás disso é baseada neste artigo . Crio k folds e construo k modelos OLS, cada um com dados sem uma das dobras. Em seguida, faço a média dos coeficientes de regressão para obter o modelo final.
Isso me parece semelhante a algo como regressão aleatória da floresta, na qual várias árvores de regressão são construídas e calculadas a média. No entanto, o desempenho do modelo OLS médio parece pior do que simplesmente construir um modelo OLS em todos os dados. Minha pergunta é: existe uma razão teórica para a média de vários modelos OLS estar errada ou indesejável? Podemos esperar que a média de vários modelos OLS reduza a super adaptação? Abaixo está um exemplo de R.
#Load and prepare data
library(MASS)
data(Boston)
trn <- Boston[1:400,]
tst <- Boston[401:nrow(Boston),]
#Create function to build k averaging OLS model
lmave <- function(formula, data, k, ...){
lmall <- lm(formula, data, ...)
folds <- cut(seq(1, nrow(data)), breaks=k, labels=FALSE)
for(i in 1:k){
tstIdx <- which(folds==i, arr.ind = TRUE)
tst <- data[tstIdx, ]
trn <- data[-tstIdx, ]
assign(paste0('lm', i), lm(formula, data = trn, ...))
}
coefs <- data.frame(lm1=numeric(length(lm1$coefficients)))
for(i in 1:k){
coefs[, paste0('lm', i)] <- get(paste0('lm', i))$coefficients
}
lmnames <- names(lmall$coefficients)
lmall$coefficients <- rowMeans(coefs)
names(lmall$coefficients) <- lmnames
lmall$fitted.values <- predict(lmall, data)
target <- trimws(gsub('~.*$', '', formula))
lmall$residuals <- data[, target] - lmall$fitted.values
return(lmall)
}
#Build OLS model on all trn data
olsfit <- lm(medv ~ ., data=trn)
#Build model averaging five OLS
olsavefit <- lmave('medv ~ .', data=trn, k=5)
#Build random forest model
library(randomForest)
set.seed(10)
rffit <- randomForest(medv ~ ., data=trn)
#Get RMSE of predicted fits on tst
library(Metrics)
rmse(tst$medv, predict(olsfit, tst))
[1] 6.155792
rmse(tst$medv, predict(olsavefit, tst))
[1] 7.661 ##Performs worse than olsfit and rffit
rmse(tst$medv, predict(rffit, tst))
[1] 4.259403