(As respostas de @Sjoerd C. de Vries e @Hrishekesh Ganu estão corretas. Pensei que, no entanto, poderia apresentar as idéias de outra maneira, o que pode ajudar algumas pessoas.)
Você pode obter um ROC como esse se o seu modelo for especificado incorretamente. Considere o exemplo abaixo (codificado R
), que é adaptado da minha resposta aqui: Como usar boxplots para encontrar o ponto em que os valores têm maior probabilidade de vir de diferentes condições?
## data
Cond.1 = c(2.9, 3.0, 3.1, 3.1, 3.1, 3.3, 3.3, 3.4, 3.4, 3.4, 3.5, 3.5, 3.6, 3.7, 3.7,
3.8, 3.8, 3.8, 3.8, 3.9, 4.0, 4.0, 4.1, 4.1, 4.2, 4.4, 4.5, 4.5, 4.5, 4.6,
4.6, 4.6, 4.7, 4.8, 4.9, 4.9, 5.5, 5.5, 5.7)
Cond.2 = c(2.3, 2.4, 2.6, 3.1, 3.7, 3.7, 3.8, 4.0, 4.2, 4.8, 4.9, 5.5, 5.5, 5.5, 5.7,
5.8, 5.9, 5.9, 6.0, 6.0, 6.1, 6.1, 6.3, 6.5, 6.7, 6.8, 6.9, 7.1, 7.1, 7.1,
7.2, 7.2, 7.4, 7.5, 7.6, 7.6, 10, 10.1, 12.5)
dat = stack(list(cond1=Cond.1, cond2=Cond.2))
ord = order(dat$values)
dat = dat[ord,] # now the data are sorted
## logistic regression models
lr.model1 = glm(ind~values, dat, family="binomial") # w/o a squared term
lr.model2 = glm(ind~values+I(values^2), dat, family="binomial") # w/ a squared term
lr.preds1 = predict(lr.model1, data.frame(values=seq(2.3,12.5,by=.1)), type="response")
lr.preds2 = predict(lr.model2, data.frame(values=seq(2.3,12.5,by=.1)), type="response")
## here I plot the data & the 2 models
windows()
with(dat, plot(values, ifelse(ind=="cond2",1,0),
ylab="predicted probability of condition2"))
lines(seq(2.3,12.5,by=.1), lr.preds1, lwd=2, col="red")
lines(seq(2.3,12.5,by=.1), lr.preds2, lwd=2, col="blue")
legend("bottomright", legend=c("model 1", "model 2"), lwd=2, col=c("red", "blue"))
É fácil ver que o modelo vermelho está sem a estrutura dos dados. Podemos ver como são as curvas ROC quando plotadas abaixo:
library(ROCR) # we'll use this package to make the ROC curve
## these are necessary to make the ROC curves
pred1 = with(dat, prediction(fitted(lr.model1), ind))
pred2 = with(dat, prediction(fitted(lr.model2), ind))
perf1 = performance(pred1, "tpr", "fpr")
perf2 = performance(pred2, "tpr", "fpr")
## here I plot the ROC curves
windows()
plot(perf1, col="red", lwd=2)
plot(perf2, col="blue", lwd=2, add=T)
abline(0,1, col="gray")
legend("bottomright", legend=c("model 1", "model 2"), lwd=2, col=c("red", "blue"))
Agora podemos ver que, para o modelo mal especificado (vermelho), quando a taxa de falso positivo se torna maior que 80 %, a taxa de falso positivo aumenta mais rapidamente que a taxa de verdadeiro positivo. Observando os modelos acima, vemos que esse ponto é onde as linhas vermelha e azul se cruzam na parte inferior esquerda.