Respostas:
Portanto, se você deseja que duas dessas amostras sejam reunidas em uma, você tem:
onde e ˉ y 2 são médias das amostras e é 1 e s 2 são da amostra desvios-padrão.
Para adicioná-los, você tem:
o que não é simples uma vez que o novo meio é diferente de ˉ y 1 e ˉ y 2 :
A fórmula final é:
Para a versão de desvio padrão comumente corrigida de Bessel (" denominador"), os resultados para as médias são como antes, mas
Você pode ler mais informações aqui: http://en.wikipedia.org/wiki/Standard_deviation
I had the same problem: having the standard deviation, means and sizes of several subsets with empty intersection, compute the standard deviation of the union of those subsets.
I like the answer of sashkello and Glen_b ♦, but I wanted to find a proof of it. I did it in this way, and I leave it here in case it is of help for anybody.
So the aim is to see that indeed:
Step by step:
Now the trick is to realize that we can reorder the sums: since each
and hence, continuing with the equality chain:
This been said, there is probably a simpler way to do this.
The formula can be extended to subsets as stated before. The proof would be induction on the number of sets. The base case is already proven, and for the induction step you should apply a similar equality chain to the latter.
s
from the standard deviations, means and sizes of two subsets. In the formula there is no reference to the individual observations. In the proof there is, but its just a proof, and from my point of view, correct.