Quantas defasagens usar no teste de Ljung-Box de uma série temporal?


20

Depois que um modelo ARMA é adequado a uma série temporal, é comum verificar os resíduos pelo teste do portmanteau de Ljung-Box (entre outros testes). O teste Ljung-Box retorna um valor de p. Ele possui um parâmetro, h , que é o número de defasagens a serem testadas. Alguns textos recomendam o uso de h = 20; outros recomendam o uso de h = ln (n); a maioria não diz o que h usar.

Em vez de usar um valor único para h , suponha que eu faça o teste de Ljung-Box para todos os h <50 e depois escolha o h que fornece o valor mínimo de p. Essa abordagem é razoável? Quais são as vantagens e desvantagens? (Uma desvantagem óbvia é o aumento do tempo de computação, mas isso não é um problema aqui.) Existe literatura sobre isso?

Para elaborar um pouco .... Se o teste der p> 0,05 para todo h , então obviamente as séries temporais (resíduos) passam no teste. Minha pergunta diz respeito a como interpretar o teste se p <0,05 para alguns valores de he não para outros valores.


1
@ user2875, excluí minha resposta. Fato é que, para grandes h o teste não é confiável. Portanto, a resposta realmente depende de qual h , p<0.05 . Além disso, qual é o valor exato de p ? Se diminuirmos o limite para 0.01 , o resultado do teste muda? Pessoalmente, no caso de hipóteses conflitantes, procuro outros indicadores, quer o modelo seja bom ou não. Quão bem o modelo se encaixa? Como o modelo se compara aos modelos alternativos? O modelo alternativo tem os mesmos problemas? Para que outras violações o teste rejeita o nulo?
Mcktas

1
@mpiktas, O teste Ljung-Box é baseado em uma estatística cuja distribuição é assintoticamente (à medida que h se torna grande) qui-quadrado. No entanto, à medida que h aumenta em relação a n, o poder do teste diminui para 0. Portanto, o desejo de escolher h é grande o suficiente para que a distribuição seja próxima do qui-quadrado, mas pequena o suficiente para ter energia útil. (Eu não sei o que o risco de um falso negativo é que, quando h é pequeno.)
user2875

@ user2875, é a terceira vez que você muda a pergunta. Primeiro você pergunta sobre a estratégia de escolher com o menor valor, depois como interpretar o teste se p < 0,05 para alguns valores de h , e agora qual é o melhor h para escolher. Todas as três perguntas têm respostas diferentes e podem até ter respostas diferentes, dependendo do contexto de um problema específico. hp<0.05hh
precisa saber é o seguinte

@mpiktas, as perguntas são todas iguais, apenas maneiras diferentes de encarar. (Como apontado, se p> 0,05 para todo h, sabemos como interpretar o menor p; se conhecemos o ótimo h - não sabemos -, não estaríamos preocupados em escolher o menor p.)
precisa saber é o seguinte

Respostas:


9

A resposta definitivamente depende de: Para que estão realmente tentando usar o teste ?Q

O motivo comum é: estar mais ou menos confiante em relação à significância estatística conjunta da hipótese nula de nenhuma autocorrelação até lag (alternativamente, assumindo que você tenha algo próximo a um ruído branco fraco ) e criar umh modelo parcimonioso , tendo tão pouco número de parâmetros possível.

Normalmente, os dados de séries temporais possuem padrão sazonal natural, portanto, a regra prática seria definir h para o dobro desse valor. Outro é o horizonte de previsão, se você usar o modelo para prever necessidades. Por fim, se você encontrar algumas partidas significativas nessas últimas defasagens, tente pensar nas correções (isso pode ser devido a alguns efeitos sazonais ou os dados não foram corrigidos para valores extremos).

Em vez de usar um valor único para h, suponha que eu faça o teste de Ljung-Box para todos os h <50 e depois escolha o h que fornece o valor mínimo de p.

É um teste conjunto de significância ; portanto, se a escolha de é orientada por dados, por que devo me preocupar com pequenas partidas (ocasionais?) Com um atraso menor que h , supondo que seja muito menor do que n, é claro (o poder do teste que você mencionou). Procurando encontrar um modelo simples, mas relevante, sugiro os critérios de informação descritos abaixo.hhn

Minha pergunta diz respeito a como interpretar o teste se para alguns valores de he não para outros valores.p<0.05h

Portanto, vai depender de quão longe do presente isso acontece. Desvantagens de partidas distantes: mais parâmetros para estimar, menos graus de liberdade, pior poder preditivo do modelo.

Tente estimar o modelo, incluindo as partes MA e \ ou AR no intervalo em que a partida ocorre E observe adicionalmente um dos critérios de informação (AIC ou BIC, dependendo do tamanho da amostra), para obter mais informações sobre qual modelo é mais parcimonioso. Quaisquer exercícios de previsão fora da amostra também são bem-vindos aqui.


+1, é isso que eu estava tentando expressar, mas não foi capaz de :) :)
mpiktas 25/01

8

Suponha que especificamos um modelo simples de AR (1), com todas as propriedades usuais,

yt=βyt1+ut

Denote a covariância teórica do termo de erro como

γjE(ututj)

Se pudéssemos observar o termo do erro, a autocorrelação da amostra do termo de erro é definida como

ρ~jγ~jγ~0

Onde

γ~j1nt=j+1nututj,j=0,1,2...

Mas, na prática, não observamos o termo de erro. Portanto, a autocorrelação da amostra relacionada ao termo do erro será estimada usando os resíduos da estimativa, conforme

γ^j1nt=j+1nu^tu^tj,j=0,1,2...

A estatística Q de Box-Pierce (a Ljung-Box Q é apenas uma versão em escala assintoticamente neutra) é

QBP=nj=1pρ^j2=j=1p[nρ^j]2d???χ2(p)

Nossa questão é exatamente se pode ser dito ter asymptotically uma distribuição qui-quadrado (sob a hipótese nula de não autocorellation no termo de erro) neste modelo. Para que isso aconteça, todos e todos deQBP
deve ser assintoticamente padrão normal. Uma maneira de verificar isso é examinar senρ^jtem a mesma distribuição assintótica comonρ^ (que é construído usando os erros verdadeiros e, portanto, tem o comportamento assintótico desejado sob o nulo).nρ~

Nós temos isso

u^t=ytβ^yt1=ut(β^β)yt1

onde β é um estimador consistente. entãoβ^

γ^j1nt=j+1n[ut(β^β)yt1][utj(β^β)ytj1]

=γ~j1nt=j+1n(β^β)[utytj1+utjyt1]+1nt=j+1n(β^β)2yt1ytj1

A amostra é considerada estacionária e ergódica e supõe-se que existam momentos até a ordem desejada. Desde o é consistente, isso é suficiente para as duas somas para ir para zero. Então concluímosβ^

γ^jpγ~j

Isso implica que

ρ^jpρ~jpρj

Mas isso não garante automaticamente que converge para nρ^jnρ~j (na distribuição) (pense que o teorema do mapeamento contínuo não se aplica aqui porque a transformação aplicada às variáveis ​​aleatórias depende de ). Para que isso aconteça, precisamosn

nγ^jdnγ~j

(o denominador til ou hat - convergirá para a variação do termo de erro em ambos os casos, portanto é neutro para o nosso problema).γ0

Nós temos

nγ^j=nγ~j1nt=j+1nn(β^β)[utytj1+utjyt1]+1nt=j+1nn(β^β)2yt1ytj1

Portanto, a pergunta é: faça essas duas somas, multiplicadas agora por , vá a zero em probabilidade, para que fiquemos comnnγ^j=nγ~j assintoticamente?

Para a segunda soma, temos

1nt=j+1nn(β^β)2yt1ytj1=1nt=j+1n[n(β^β)][(β^β)yt1ytj1]

Desde [n(β^β)] converges to a random variable, and β^ is consistent, this will go to zero.

For the first sum, here too we have that [n(β^β)] converges to a random variable, and so we have that

1nt=j+1n[utytj1+utjyt1]pE[utytj1]+E[utjyt1]

The first expected value, E[utytj1] is zero by the assumptions of the standard AR(1) model. But the second expected value is not, since the dependent variable depends on past errors.

So nρ^j won't have the same asymptotic distribution as nρ~j. But the asymptotic distribution of the latter is standard Normal, which is the one leading to a chi-squared distribution when squaring the r.v.

Therefore we conclude, that in a pure time series model, the Box-Pierce Q and the Ljung-Box Q statistic cannot be said to have an asymptotic chi-square distribution, so the test loses its asymptotic justification.

This happens because the right-hand side variable (here the lag of the dependent variable) by design is not strictly exogenous to the error term, and we have found that such strict exogeneity is required for the BP/LB Q-statistic to have the postulated asymptotic distribution.

Here the right-hand-side variable is only "predetermined", and the Breusch-Pagan test is then valid. (for the full set of conditions required for an asymptotically valid test, see Hayashi 2000, p. 146-149).


1
You wrote "But the second expected value is not, since the dependent variable depends on past errors." That's called strict exogeneity. I agree that it's a strong assumption, and you can build AR(p) framework without it, just by using weak exogeneity. This the reason why Breusch-Godfrey test is better in some sense: if the null is not true, then B-L loses power. B-G is based on weak exogeneity. Both tests are not good for some common econometric, applications, see e.g. this Stata's presentation, p. 4/44.
Aksakal

3
@Aksakal Thanks for the reference. The point exactly is that without strict exogeneity, the Box-Pierce/Ljung-Box do not have an asymptotic chi-square distribution, this is what the mathematics above show. Weak exogeneity (which holds in the above model) is not enough for them. This is exactly what the presentation you link to says in p. 3/44.
Alecos Papadopoulos

2
@AlecosPapadopoulos, an amazing post!!! Among the few best ones I have encountered here at Cross Validated. I just wish it would not disappear in this long thread and many users would find and benefit from it in the future.
Richard Hardy

3

Before you zero-in on the "right" h (which appears to be more of an opinion than a hard rule), make sure the "lag" is correctly defined.

http://www.stat.pitt.edu/stoffer/tsa2/Rissues.htm

Quoting the section below Issue 4 in the above link:

"....The p-values shown for the Ljung-Box statistic plot are incorrect because the degrees of freedom used to calculate the p-values are lag instead of lag - (p+q). That is, the procedure being used does NOT take into account the fact that the residuals are from a fitted model. And YES, at least one R core developer knows this...."

Edit (01/23/2011): Here's an article by Burns that might help:

http://lib.stat.cmu.edu/S/Spoetry/Working/ljungbox.pdf


@bil_080, the OP does not mention R, and help page for Box.test in R mentions the correction and has an argument to allow for the correction, although you need to supply it manualy.
mpiktas

@mpiktas, Opa, você está certo. Presumi que essa fosse uma pergunta R. Quanto à segunda parte do seu comentário, existem vários pacotes R que usam estatísticas do Ljung-Box. Portanto, é uma boa idéia garantir que o usuário entenda o que significa "atraso" do pacote.
bill_080

Thanks--I am using R, but the question is a general one. Just to be safe, I was doing the test with the LjungBox function in the portes package, as well as Box.test.
user2875

2

The thread "Testing for autocorrelation: Ljung-Box versus Breusch-Godfrey" shows that the Ljung-Box test is essentially inapplicable in the case of an autoregressive model. It also shows that Breusch-Godfrey test should be used instead. That limits the relevance of your question and the answers (although the answers may include some generally good points).


The trouble with LB test is when autoregressive models have other regressors, i.e. ARMAX not ARM models. OP explicitly states ARMA not ARMAX in the question. Hence, I think that your answer is incorrect.
Aksakal

@Aksakal, I clearly see from Alecos Papadopoulos answer (and comments under it) in the above-mentioned thread that Ljung-Box test is inapplicable in both cases, i.e. pure AR/ARMA and ARX/ARMAX. Therefore, I cannot agree with you.
Richard Hardy

Alecos Papadopoulos's answer is good, but incomplete. It points out to Ljung-Box test's assumption of strict exogeneity but it fails to mention that if you're fine with the assumption, then L-B test is Ok to use. B-G test, which he and I favor over L-B, relies on weak exogeneity. It's better to use tests with weaker assumptions in general, of course. However, even B-G test's assumptions are too strong in many cases.
Aksakal

@Aksakal, The setting of this question is quite definite -- it considers residuals from an ARMA model. The important thing here is, L-B does not work (as shown explicitly in Alecos post in this as well as the above-cited thread) while B-G test does work. Of course, things can happen in other settings (even B-G test's assumptions are too strong in many cases) -- but that is not the concern in this thread. Also, I did not get what the assumption is in your statement if you're fine with the assumption, then L-B test is Ok to use. Is that supposed to invalidate Alecos point?
Richard Hardy

1

Escanciano and Lobato constructed a portmanteau test with automatic, data-driven lag selection based on the Pierce-Box test and its refinements (which include the Ljung-Box test).

The gist of their approach is to combine the AIC and BIC criteria --- common in the identification and estimation of ARMA models --- to select the optimal number of lags to be used. In the introduction of they suggest that, intuitively, ``test conducted using the BIC criterion are able to properly control for type I error and are more powerful when serial correlation is present in the first order''. Instead, tests based on AIC are more powerful against high order serial correlation. Their procedure thus choses a BIC-type lag selection in the case that autocorrelations seem to be small and present only at low order, and an AIC-type lag section otherwise.

The test is implemented in the R package vrtest (see function Auto.Q).


1

The two most common settings are min(20,T1) and lnT where T is the length of the series, as you correctly noted.

The first one is supposed to be from the authorative book by Box, Jenkins, and Reinsel. Time Series Analysis: Forecasting and Control. 3rd ed. Englewood Cliffs, NJ: Prentice Hall, 1994.. However, here's all they say about the lags on p.314: enter image description here

It's not a strong argument or suggestion by any means, yet people keep repeating it from one place to another.

The second setting for a lag is from Tsay, R. S. Analysis of Financial Time Series. 2nd Ed. Hoboken, NJ: John Wiley & Sons, Inc., 2005, here's what he wrote on p.33:

Several values of m are often used. Simulation studies suggest that the choice of m ≈ ln(T ) provides better power performance.

This is a somewhat stronger argument, but there's no description of what kind of study was done. So, I wouldn't take it at a face value. He also warns about seasonality:

This general rule needs modification in analysis of seasonal time series for which autocorrelations with lags at multiples of the seasonality are more important.

Summarizing, if you just need to plug some lag into the test and move on, then you can use either of these setting, and that's fine, because that's what most practitioners do. We're either lazy or, more likely, don't have time for this stuff. Otherwise, you'd have to conduct your own research on the power and properties of the statistics for series that you deal with.

UPDATE.

Here's my answer to Richard Hardy's comment and his answer, which refers to another thread on CV started by him. You can see that the exposition in the accepted (by Richerd Hardy himself) answer in that thread is clearly based on ARMAX model, i.e. the model with exogenous regressors xt:

yt=xtβ+ϕ(L)yt+ut

However, OP did not indicate that he's doing ARMAX, to contrary, he explicitly mentions ARMA:

After an ARMA model is fit to a time series, it is common to check the residuals via the Ljung-Box portmanteau test

One of the first papers that pointed to a potential issue with LB test was Dezhbaksh, Hashem (1990). “The Inappropriate Use of Serial Correlation Tests in Dynamic Linear Models,” Review of Economics and Statistics, 72, 126–132. Here's the excerpt from the paper:

enter image description here

As you can see, he doesn't object to using LB test for pure time series models such as ARMA. See also the discussion in the manual to a standard econometrics tool EViews:

If the series represents the residuals from ARIMA estimation, the appropriate degrees of freedom should be adjusted to represent the number of autocorrelations less the number of AR and MA terms previously estimated. Note also that some care should be taken in interpreting the results of a Ljung-Box test applied to the residuals from an ARMAX specification (see Dezhbaksh, 1990, for simulation evidence on the finite sample performance of the test in this setting)

Yes, you have to be careful with ARMAX models and LB test, but you can't make a blanket statement that LB test is always wrong for all autoregressive series.

UPDATE 2

Alecos Papadopoulos's answer shows why Ljung-Box test requires strict exogeneity assumption. He doesn't show it in his post, but Breusch-Gpdfrey test (another alternative test) requires only weak exogeneity, which is better, of course. This what Greene, Econometrics, 7th ed. says on the differences between tests, p.923:

The essential difference between the Godfrey–Breusch and the Box–Pierce tests is the use of partial correlations (controlling for X and the other variables) in the former and simple correlations in the latter. Under the null hypothesis, there is no autocorrelation in εt , and no correlation between xt and εs in any event, so the two tests are asymptotically equivalent. On the other hand, because it does not condition on xt , the Box–Pierce test is less powerful than the LM test when the null hypothesis is false, as intuition might suggest.


I suppose that you decided to answer the question as it was bumped to the top of the active threads by my recent answer. Curiously, I argue that the test is inappropriate in the setting under consideration, making the whole thread problematic and the answers in it especially so. Do you think it is good practice to post yet another answer that ignores this problem without even mentioning it (just like all the previous answers do)? Or do you think my answer does not make sense (which would justify posting an answer like yours)?
Richard Hardy

Thank you for an update! I am not an expert, but the argumentation by Alecos Papadopoulos in "Testing for autocorrelation: Ljung-Box versus Breusch-Godfrey" and in the comments under his answer suggests that Ljung-Box is indeed inapplicable on residuals from pure ARMA (as well as ARMAX) models. If the wording is confusing, check the maths there, it seems fine. I think this is a very interesting and important question, so I would really like to find agreement between all of us here.
Richard Hardy

0

... h should be as small as possible to preserve whatever power the LB test may have under the circumstances. As h increases the power drops. The LB test is a dreadfully weak test; you must have a lot of samples; n must be ~> 100 to be meaningful. Unfortunately I have never seen a better test. But perhaps one exists. Anyone know of one ?

Paul3nt


0

There's no correct answer to this that works in all situation for the reasons other have said it will depend on your data.

That said, after trying to figure out to reproduce a result in Stata in R I can tell you that, by default Stata implementation uses: min(n22,40). Either half the number of data points minus 2, or 40, whichever is smaller.

All defaults are wrong, of course, and this will definitely be wrong in some situations. In many situations, this might not be a bad place to start.


0

Let me suggest you our R package hwwntest. It has implemented Wavelet-based white noise tests that do not require any tuning parameters and have good statistical size and power.

Additionally, I have recently found "Thoughts on the Ljung-Box test" which is excellent discussion on the topic from Rob Hyndman.

Update: Considering the alternative discussion in this thread regarding ARMAX, another incentive to look at hwwntest is the availability of a theoretical power function for one of the tests against an alternative hypothesis of ARMA(p,q) model.

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.