Maneira mais eficiente de implementar a Linha de visão em uma grade 2d com vazamento de raios?


9

Considere uma grade 2D de peças e uma esfera aproximada de coordenadas - centralizada no jogador - que representa a linha de visão. O objetivo é bloquear a linha de visão além dos obstáculos (ou seja, paredes).

É relativamente simples determinar se uma célula individual na esfera de visão é visível: lance um raio do jogador para a célula alvo, usando o de Bresenham - se uma das células sobrepostas entre o jogador e o alvo for um obstáculo, a célula alvo não é visível.

Agora, meu primeiro pensamento foi percorrer todas as células da grade na linha de visão - mas isso me parece ineficiente. Por exemplo, se o jogador estiver ao lado de uma parede e você determinar que a célula além da parede não é visível, poderá determinar todas as células no raio depois que não serão visíveis.

Também considerei lançar um raio para cada célula ao longo do perímetro da esfera de visão e iterar cada célula ao longo de cada raio - mas então eu processaria algumas células mais de uma vez.

Existe uma maneira mais eficiente de fazer isso?

Embora a iteração de ~ 50 células por turno seja um cálculo relativamente leve, estou buscando velocidade - o objetivo é ser capaz de pedalar alguns turnos por segundo na reprodução automática. Então, quanto mais eficiente eu puder fazer isso, melhor.


Perguntas "melhor" não costumam fazer bem. Como a melhor maneira é muito específica para seus objetivos e outros recursos, você precisa apoiar. Eu recomendo que você apenas crie um perfil do código e veja se ele é bom o suficiente para suas necessidades agora. A criação de perfil também mostrará as partes do seu código que você precisa melhorar primeiro para obter melhor desempenho.
Michaelhouse

Quantas células você espera ter ao redor do player?
Luis Estrada

@Luis provavelmente um raio de 7 ou 8 células.
CodeMoose

2
Você se lembrará de gamedev.stackexchange.com/a/47560/4129. Você pode fazer isso em uma varredura de O (n).
Will

2
Tem certeza de que precisa otimizar? Você realmente encontrou um gargalo que precisa ser resolvido? Ou você está simplesmente adivinhando que será um problema no futuro? Se o seu código for relativamente modular, deve ser a coisa mais fácil do mundo desenvolver uma solução e depois voltar a ele mais tarde, se for necessária a otimização.
Djentleman

Respostas:


8

Você pode tentar lançar "arcos de sombra" para cobrir áreas maiores de uma só vez. Embora os detalhes reais estejam um pouco envolvidos, Eric Lippert tem uma explicação muito detalhada (com demonstração ao vivo do Silverlight) em http://blogs.msdn.com/b/ericlippert/archive/2011/12/12/shadowcasting-in -c-part-one.aspx .


o link do blog está morto. Alguma atualização sobre esta resposta?
Neon Warge

É por isso que geralmente recomendamos que as respostas incluam pelo menos um resumo aproximado das técnicas que eles propõem, em vez de depender totalmente de links externos. Nesse caso, @NeonWarge, a implementação desta técnica pela Stoiko em uma resposta posterior é um guia útil?
DMGregory

5

Eu implementei o algoritmo sugerido por Jimmy.

Vídeo do código em ação aqui: https://youtu.be/lIlPfwlcbHo

Campo de visão da grade

/*
   What this code does:
      Rasterizes a single Field Of View octant on a grid, similar to the way 
      FOV / shadowcasting is implemented in some roguelikes.
      Clips to bitmap
      Steps on pixel centers
      Optional attenuation
      Optional circle clip
      Optional lit blocking tiles

   To rasterize the entire FOV, call this in a loop with octant in range 0-7
   Inspired by http://blogs.msdn.com/b/ericlippert/archive/2011/12/12/shadowcasting-in-c-part-one.aspx
*/

static inline int Mini( int a, int b ) {
    return a < b ? a : b;
}

static inline int Maxi( int a, int b ) {
    return a > b ? a : b;
}

static inline int Clampi( int v, int min, int max ) {
    return Maxi( min, Mini( v, max ) );
}

typedef union c2_s {
    struct {
        int x, y;
    };
    int a[2];
} c2_t;

static const c2_t c2zero = { .a = { 0, 0 } };
static const c2_t c2one = { .a = { 1, 1 } };

static inline c2_t c2xy( int x, int y ) {
    c2_t c = { { x, y } };
    return c;
}

static inline c2_t c2Neg( c2_t c ) {
    return c2xy( -c.x, -c.y );
}

static inline c2_t c2Add( c2_t a, c2_t b ) {
    return c2xy( a.x + b.x, a.y + b.y );
}

static inline c2_t c2Sub( c2_t a, c2_t b ) {
    return c2xy( a.x - b.x, a.y - b.y );
}

static inline int c2Dot( c2_t a, c2_t b ) {
    return a.x * b.x + a.y * b.y;
}

static inline int c2CrossC( c2_t a, c2_t b ) {
    return a.x * b.y - a.y * b.x;
}

static inline c2_t c2Clamp( c2_t c, c2_t min, c2_t max ) {
    return c2xy( Clampi( c.x, min.x, max.x ), Clampi( c.y, min.y, max.y ) );
}

static inline c2_t c2Scale( c2_t a, int s ) {
    return c2xy( a.x * s, a.y * s );
}

void RasterizeFOVOctant( int originX, int originY,
                         int radius, 
                         int bitmapWidth, int bitmapHeight,
                         int octant,
                         int skipAttenuation,
                         int skipClampToRadius,
                         int darkWalls,
                         const unsigned char *inBitmap, 
                         unsigned char *outBitmap ) {
#define READ_PIXEL(c) inBitmap[(c).x+(c).y*bitmapWidth]
#define WRITE_PIXEL(c,color) outBitmap[(c).x+(c).y*bitmapWidth]=(color)
#define MAX_RAYS 64
#define ADD_RAY(c) {nextRays->rays[Mini(nextRays->numRays,MAX_RAYS-1)] = (c);nextRays->numRays++;}
#define IS_ON_MAP(c) ((c).x >= 0 && (c).x < bitmapWidth && (c).y >= 0 && (c).y < bitmapHeight)
    typedef struct {
        int numRays;
        c2_t rays[MAX_RAYS];
    } raysList_t;
    // keep these coupled like this
    static const const c2_t bases[] = {
        { { 1, 0  } }, { { 0, 1  } },
        { { 1, 0  } }, { { 0, -1 } },
        { { -1, 0 } }, { { 0, -1 } },
        { { -1, 0 } }, { { 0, 1  } },
        { { 0, 1  } }, { { -1, 0 } },
        { { 0, 1  } }, { { 1, 0  } },
        { { 0, -1 } }, { { 1, 0  } },
        { { 0, -1 } }, { { -1, 0 } },
    }; 
    c2_t e0 = bases[( octant * 2 + 0 ) & 15];
    c2_t e1 = bases[( octant * 2 + 1 ) & 15];
    raysList_t rayLists[2] = { {
        .numRays = 2,
        .rays = {
            c2xy( 1, 0 ),
            c2xy( 1, 1 ),
        }, 
    } };
    c2_t bitmapSize = c2xy( bitmapWidth, bitmapHeight );
    c2_t bitmapMax = c2Sub( bitmapSize, c2one );
    c2_t origin = c2Clamp( c2xy( originX, originY ), c2zero, bitmapMax );
    if ( READ_PIXEL( origin ) ) {
        WRITE_PIXEL( origin, 255 );
        return;
    }
    c2_t dmin = c2Neg( origin );
    c2_t dmax = c2Sub( bitmapMax, origin );
    int dmin0 = c2Dot( dmin, e0 );
    int dmax0 = c2Dot( dmax, e0 );
    int limit0 = Mini( radius, dmin0 > 0 ? dmin0 : dmax0 );
    int dmin1 = c2Dot( dmin, e1 );
    int dmax1 = c2Dot( dmax, e1 );
    int limit1 = Mini( radius, dmin1 > 0 ? dmin1 : dmax1 );
    c2_t ci = origin;
    for ( int i = 0; i <= limit0; i++ ) {
        int i2 = i * 2;
        raysList_t *currRays = &rayLists[( i + 0 ) & 1];
        raysList_t *nextRays = &rayLists[( i + 1 ) & 1];
        nextRays->numRays = 0;
        for ( int r = 0; r < currRays->numRays - 1; r += 2 ) {
            c2_t r0 = currRays->rays[r + 0];
            c2_t r1 = currRays->rays[r + 1];
            int inyr0 = ( i2 - 1 ) * r0.y / r0.x;
            int outyr0 = ( i2 + 1 ) * r0.y / r0.x;
            int inyr1 = ( i2 - 1 ) * r1.y / r1.x;
            int outyr1 = ( i2 + 1 ) * r1.y / r1.x;

            // every pixel with a center INSIDE the frustum is lit

            int starty = outyr0 + 1;
            if ( c2CrossC( r0, c2xy( i2, outyr0 ) ) < 0 ) {
                starty++;
            }
            starty /= 2;
            c2_t start = c2Add( ci, c2Scale( e1, starty ) );
            int endy = inyr1 + 1;
            if ( c2CrossC( r1, c2xy( i2, inyr1 + 1 ) ) > 0 ) {
                endy--;
            }
            endy /= 2;
            //c2_t end = c2Add( ci, c2Scale( e1, endy ) );
            {
                int y;
                c2_t p;
                int miny = starty;
                int maxy = Mini( endy, limit1 ); 
                for ( y = miny, p = start; y <= maxy; y++, p = c2Add( p, e1 ) ) {
                    WRITE_PIXEL( p, 255 );
                }
            }

            // push rays for the next column

            // correct the bounds first

            c2_t bounds0;
            c2_t bounds1;
            c2_t firstin = c2Add( ci, c2Scale( e1, ( inyr0 + 1 ) / 2 ) );
            c2_t firstout = c2Add( ci, c2Scale( e1, ( outyr0 + 1 ) / 2 ) );
            if ( ( IS_ON_MAP( firstin ) && ! READ_PIXEL( firstin ) )
                && ( IS_ON_MAP( firstout ) && ! READ_PIXEL( firstout ) ) ) {
                  bounds0 = r0;
            } else {
                int top = ( outyr0 + 1 ) / 2;
                int bottom = Mini( ( inyr1 + 1 ) / 2, limit1 );
                int y;
                c2_t p = c2Add( ci, c2Scale( e1, top ) );
                for ( y = top * 2; y <= bottom * 2; y += 2, p = c2Add( p, e1 ) ) {
                    if ( ! READ_PIXEL( p ) ) {
                        break;
                    }
                    // pixels that force ray corrections are lit too
                    WRITE_PIXEL( p, 255 );
                }
                bounds0 = c2xy( i2 - 1, y - 1 );
                inyr0 = ( i2 - 1 ) * bounds0.y / bounds0.x;
                outyr0 = ( i2 + 1 ) * bounds0.y / bounds0.x;
            }
            c2_t lastin = c2Add( ci, c2Scale( e1, ( inyr1 + 1 ) / 2 ) );
            c2_t lastout = c2Add( ci, c2Scale( e1, ( outyr1 + 1 ) / 2 ) );
            if ( ( IS_ON_MAP( lastin ) && ! READ_PIXEL( lastin ) )
                && ( IS_ON_MAP( lastout ) && ! READ_PIXEL( lastout ) ) ) {
                bounds1 = r1;
            } else {
                int top = ( outyr0 + 1 ) / 2;
                int bottom = Mini( ( inyr1 + 1 ) / 2, limit1 );
                int y;
                c2_t p = c2Add( ci, c2Scale( e1, bottom ) );
                for ( y = bottom * 2; y >= top * 2; y -= 2, p = c2Sub( p, e1 ) ) {
                    if ( ! READ_PIXEL( p ) ) {
                        break;
                    }
                    // pixels that force ray corrections are lit too
                    WRITE_PIXEL( p, 255 );
                }
                bounds1 = c2xy( i2 + 1, y + 1 );
                inyr1 = ( i2 - 1 ) * bounds1.y / bounds1.x;
                outyr1 = ( i2 + 1 ) * bounds1.y / bounds1.x;
            }

            // closed frustum - quit
            if ( c2CrossC( bounds0, bounds1 ) <= 0 ) {
                continue;
            }

            // push actual rays
            {
                ADD_RAY( bounds0 );
                int top = ( outyr0 + 1 ) / 2;
                int bottom = Mini( ( inyr1 + 1 ) / 2, limit1 );
                c2_t p = c2Add( ci, c2Scale( e1, top ) );
                int prevPixel = READ_PIXEL( p );
                for ( int y = top * 2; y <= bottom * 2; y += 2, p = c2Add( p, e1 ) ) {
                    int pixel = READ_PIXEL( p );
                    if ( prevPixel != pixel ) {
                        c2_t ray;
                        if ( pixel ) {
                            ray = c2xy( i2 + 1, y - 1 );
                        } else {
                            ray = c2xy( i2 - 1, y - 1 );
                        }
                        ADD_RAY( ray );
                    }
                    prevPixel = pixel;
                }
                ADD_RAY( bounds1 );
            }
        }
        ci = c2Add( ci, e0 );
    }

    if ( ! skipAttenuation ) {
        c2_t ci = origin;
        int rsq = radius * radius;
        for ( int i = 0; i <= limit0; i++ ) {
            c2_t p = ci;
            for ( int j = 0; j <= limit1; j++ ) {
                c2_t d = c2Sub( p, origin );
                int dsq = c2Dot( d, d );
                int mod = 255 - Mini( dsq * 255 / rsq, 255 );
                int lit = !! outBitmap[p.x + p.y * bitmapWidth];
                WRITE_PIXEL( p, mod * lit );
                p = c2Add( p, e1 );
            }
            ci = c2Add( ci, e0 );
        }
    } else if ( ! skipClampToRadius ) {
        c2_t ci = origin;
        int rsq = radius * radius;
        for ( int i = 0; i <= limit0; i++ ) {
            c2_t p = ci;
            for ( int j = 0; j <= limit1; j++ ) {
                c2_t d = c2Sub( p, origin );
                if ( c2Dot( d, d ) > rsq ) { 
                    WRITE_PIXEL( p, 0 );
                }
                p = c2Add( p, e1 );
            }
            ci = c2Add( ci, e0 );
        }
    }

    if ( darkWalls ) {
        c2_t ci = origin;
        for ( int i = 0; i <= limit0; i++ ) {
            c2_t p = ci;
            for ( int j = 0; j <= limit1; j++ ) {
                if ( READ_PIXEL( p ) ) { 
                    WRITE_PIXEL( p, 0 );
                }
                p = c2Add( p, e1 );
            }
            ci = c2Add( ci, e0 );
        }
    } 
}
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.