Existem alguns tópicos e respostas excelentes para discussão neste site (eletronics.se) sobre a teoria das transformadas de Fourier. Eu tentei implementar o mesmo em uma ferramenta de simulação (MS Excel :)).
Eu tenho alguns problemas de interpretação e implementação em relação ao mesmo. Estou tentando analisar uma forma de onda de tensão de 50 Hz. No entanto, os dados abaixo são apenas dados fictícios gerados, tentando estabelecer uma estrutura conceitual para implementação em um processador de baixo custo incorporado de 16 bits com restrição de poder de processamento e memória.
ETA (30 de maio de 2012)
Versão TL; DR:
Escusado será dizer em electronics.se, mas estou usando um processador incorporado com restrição de memória e poder de processamento.
Existem algumas perguntas aqui que ainda não foram respondidas:
- Como é realizado o janelamento nas amostras que eu tenho, sem aumentar significativamente a pegada de memória do algoritmo? Gostaria que estas fossem uma descrição básica passo a passo, pois sou bastante novo no DSP.
- Por que as magnitudes foram reduzidas pela metade quando interpolamos 41 amostras para obter 32, mas permaneceram como estavam (exceto por algum ruído) quando as interpolaram para obter 64?
Estou declarando uma recompensa pela pergunta, na esperança de obter excelentes respostas que sejam acionáveis para um iniciante no DSP.
Experiência 1:
Entrada no domínio do tempo
Eu criei uma onda senoidal usando para gerar 64 amostras. Em seguida, adicionou-se 30% 3 r d harmónicas, 20% 5 t h harmónicas, 15% 7 t h harmónicas, 10% 9 t harmónica, e 20% 11 t h harmónicas. Isso levou a estas amostras:
0, 0.628226182, 0.939545557, 0.881049194, 0.678981464, 0.602991986, 0.719974543,
0.873221372, 0.883883476, 0.749800373, 0.636575155, 0.685547957, 0.855268479,
0.967780108, 0.904799909, 0.737695292, 0.65, 0.737695292, 0.904799909, 0.967780108,
0.855268479, 0.685547957, 0.636575155, 0.749800373, 0.883883476, 0.873221372,
0.719974543, 0.602991986, 0.678981464, 0.881049194, 0.939545557, 0.628226182, 0,
-0.628226182, -0.939545557, -0.881049194, -0.678981464, -0.602991986, -0.719974543,
-0.873221372, -0.883883476, -0.749800373, -0.636575155, -0.685547957, -0.855268479,
-0.967780108, -0.904799909, -0.737695292, -0.65, -0.737695292, -0.904799909,
-0.967780108, -0.855268479, -0.685547957, -0.636575155, -0.749800373, -0.883883476,
-0.873221372, -0.719974543, -0.602991986, -0.678981464, -0.881049194, -0.939545557,
-0.628226182
E esta forma de onda:
Peguei um DFT dessas amostras com base no algoritmo Radix 2 e obtive esses valores:
0, -32i, 0, -9.59999999999999i, 0, -6.4i, 0, -4.79999999999999i, 0, -3.20000000000001i,
0, -6.4i, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6.4i, 0, 3.19999999999999i, 0, 4.8i, 0,
6.4i, 0, 9.60000000000001i, 0, 32i
Tomando os valores absolutos dos números complexos acima como a razão do fundamental (2º valor) e ignorando as informações da fase (se houver), obtive as magnitudes dos componentes harmônicos injetados exatamente como injetados.
Representação no domínio da frequência
Por enquanto, tudo bem.
Experiência 2:
Entrada no domínio do tempo
0, 0.853079823, 0.857877516, 0.603896038, 0.762429734, 0.896260999, 0.695656841,
0.676188057, 0.928419527, 0.897723205, 0.664562475, 0.765676034, 0.968738879,
0.802820512, 0.632264626, 0.814329015, 0.875637458, 0.639141079, 0.696479632,
0.954031849, 0.50925641, -0.50925641, -0.954031849, -0.696479632, -0.639141079,
-0.875637458, -0.814329015, -0.632264626, -0.802820512, -0.968738879, -0.765676034,
-0.664562475, -0.897723205, -0.928419527, -0.676188057, -0.695656841, -0.896260999,
-0.762429734, -0.603896038, -0.857877516, -0.853079823, -6.87889E-15, 0.853079823,
0.857877516, 0.603896038, 0.762429734, 0.896260999, 0.695656841, 0.676188057,
0.928419527, 0.897723205, 0.664562475, 0.765676034, 0.968738879, 0.802820512,
0.632264626, 0.814329015, 0.875637458, 0.639141079, 0.696479632, 0.954031849,
0.50925641, -0.50925641, -0.954031849
E esta forma de onda:
Peguei um DFT dessas amostras com base no algoritmo Radix 2 e obtive esses valores:
14.03118145099, 22.8331789450432+2.81923657448236i, -17.9313890484703-4.4853739490832i,
-2.54294462900052-0.971245447370764i, 1.74202662319821+0.944780377248239i,
-7.2622766435314-5.09627264287862i, -1.5480700475686-1.37872970296476i,
-0.136588568631116-0.126111953353714i, -3.99554928315394-5.93646306363598i,
-0.840633449276516-1.60987487366169i, -0.373838501691708-0.955596009389976i,
-1.326751987645-5.7574455633693i, -0.168983464443025-1.34797078005724i,
-9.49818315071085E-003-1.20377723286595i, 0.571706242298176-4.14055455367115i,
0.192891008647316-0.865793520825366i, 0.457088076063747-1.22893647561869i,
3.15565897700047-5.67394957744733i, -0.573520124828716+0.682717512668197i,
-0.20041207669728+0.127925509089274i, -7.95516670999013E-002-1.22174958722397E-002i,
-1.57510358481328E-002-6.44533006507588E-002i, 2.50067192003906E-002-8.46645685508359E-
002i, 5.3665806842526E-002-9.01867018999554E-002i, 7.49143167927897E-002-
8.80550417489663E-002i, 9.11355142202819E-002-8.16075816185574E-002i,
0.103685444073525-7.25978085593222E-002i, 0.11339684328631-6.20147712757682E-002i,
0.120807189654211-5.04466357453455E-002i, 0.126272708495893-3.82586162066316E-002i,
0.130029552904267-2.56872914345987E-002i, 0.132228055573542-1.28943815159261E-002i,
0.1329519244939, 0.132228055573544+1.28943815159441E-002i,
0.130029552904267+2.56872914345769E-002i, 0.126272708495892+3.82586162066264E-002i,
0.12080718965421+5.04466357453468E-002i, 0.113396843286315+6.20147712757588E-002i,
0.103685444073529+7.25978085593135E-002i, 9.11355142202805E-002+8.16075816185583E-002i,
7.4914316792795E-002+8.80550417489592E-002i, 5.36658068425271E-002+9.01867018999563E-
002i, 2.50067192003947E-002+8.46645685508275E-002i, -1.57510358481296E-
002+6.44533006507526E-002i, -7.95516670999005E-002+1.22174958722402E-002i,
-0.20041207669728-0.127925509089278i, -0.573520124828709-0.682717512668206i,
3.15565897700049+5.67394957744733i, 0.45708807606375+1.22893647561869i,
0.192891008647318+0.865793520825373i, 0.571706242298199+4.14055455367114i,
-9.49818315070294E-003+1.20377723286595i, -0.168983464443023+1.34797078005724i,
-1.32675198764498+5.75744556336931i, -0.373838501691692+0.955596009389972i,
-0.840633449276515+1.6098748736617i, -3.99554928315393+5.93646306363599i,
-0.136588568631125+0.126111953353722i, -1.54807004756858+1.37872970296476i,
-7.26227664353139+5.09627264287866i, 1.7420266231982-0.944780377248243i,
-2.54294462900053+0.971245447370785i, -17.9313890484703+4.48537394908326i,
22.8331789450432-2.81923657448243i
Representação no domínio da frequência
As magnitudes dos números complexos acima não revelam nada que eu possa deduzir dos valores injetados no domínio do tempo.
Experiência 3
Entrada no domínio do tempo:
Agora eu peguei a mesma forma de onda e a preenchi com zero, ou seja, ajuste todas as amostras além de 41 para zero. Portanto, a seguir é apresentada a entrada no domínio do tempo:
0, 0.853079823, 0.857877516, 0.603896038, 0.762429734, 0.896260999, 0.695656841,
0.676188057, 0.928419527, 0.897723205, 0.664562475, 0.765676034, 0.968738879,
0.802820512, 0.632264626, 0.814329015, 0.875637458, 0.639141079, 0.696479632,
0.954031849, 0.50925641, -0.50925641, -0.954031849, -0.696479632, -0.639141079,
-0.875637458, -0.814329015, -0.632264626, -0.802820512, -0.968738879, -0.765676034,
-0.664562475, -0.897723205, -0.928419527, -0.676188057, -0.695656841, -0.896260999,
-0.762429734, -0.603896038, -0.857877516, -0.853079823, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
E a forma de onda:
Peguei um DFT dessas amostras com base no algoritmo Radix 2 e obtive esses valores:
0, 20.0329458083285-9.47487772467906i, -10.5723252177717-8.67648307596821i,
-8.88751906208901E-002+0.354809649783859i, 3.59322342970171-0.714736578926027i,
-3.28379151210465-4.42768029850565i, -0.232297876050463+0.434598758428557i,
1.68672762980862+8.28636148716246E-002i, -1.54927040705738-3.7402696285012i,
-0.551413356435698+0.608390885175318i, 0.616809338622588+0.187107067289195i,
-0.458965526924983-3.09409425549091i, -0.966784216252588+0.645984560777537i,
7.03082277241579E-003+4.21411299459407E-003i, 0.196179960454289-1.99184856512683i,
-0.919089774378072+0.328855579674163i, 0.222736292145887+0.222736292145884i,
1.23799833509466-3.45997355924453i, -3.29198268057418+0.324231994037239i,
-0.495840326552116-0.827259606915814i, -0.434268223171498+0.649928325340974i,
-1.13740282784196-0.168717771696843i, -8.50255402020411E-002-0.280291642522456i,
-0.495871287837938+0.449431537929797i, -0.705190861543966-0.292099618913078i,
-1.8498657760867E-003-3.76548829156425E-002i, -0.56327531746565+0.301076929791613i,
-0.445444858519027-0.330364422654705i, -2.53084763487132E-002+0.12723430263342i,
-0.608135034699087+0.152329896227613i, -0.254967975468-0.31067937701979i,
-0.114451748984804+0.241987891739128i, -0.623647028694518, -0.114451748984793-
0.241987891739111i, -0.254967975467992+0.310679377019776i, -0.608135034699088-
0.152329896227612i, -2.53084763487126E-002-0.127234302633416i,
-0.445444858519022+0.330364422654704i, -0.563275317465649-0.301076929791616i,
-1.84986577609081E-003+3.76548829156447E-002i, -0.705190861543962+0.292099618913075i,
-0.495871287837939-0.449431537929793i, -8.50255402020378E-002+0.280291642522452i,
-1.13740282784196+0.168717771696845i, -0.434268223171501-0.649928325340972i,
-0.495840326552115+0.827259606915815i, -3.29198268057417-0.324231994037237i,
1.23799833509466+3.45997355924453i, 0.222736292145887-0.222736292145884i,
-0.919089774378077-0.328855579674149i, 0.1961799604543+1.99184856512683i,
7.03082277241257E-003-4.21411299459534E-003i, -0.966784216252593-0.645984560777534i,
-0.458965526924974+3.09409425549092i, 0.616809338622592-0.187107067289204i,
-0.551413356435713-0.608390885175314i, -1.54927040705737+3.74026962850121i,
1.68672762980861-8.28636148716247E-002i, -0.232297876050455-0.434598758428559i,
-3.28379151210465+4.42768029850566i, 3.59322342970171+0.714736578926018i,
-8.88751906209093E-002-0.354809649783852i, -10.5723252177717+8.67648307596825i,
20.0329458083285+9.47487772467899i
Representação no domínio da frequência
Novamente, as magnitudes dos números complexos acima não revelam nada que eu possa deduzir de volta aos valores injetados no domínio do tempo.
ETA Como as respostas aqui apontaram para a janela, fiz outro experimento e obtive os seguintes resultados após muitas partidas falsas.
Experiência 4
Representação no domínio do tempo
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.853079823, 0.857877516, 0.603896038,
0.762429734, 0.896260999, 0.695656841, 0.676188057, 0.928419527, 0.897723205,
0.664562475, 0.765676034, 0.968738879, 0.802820512, 0.632264626, 0.814329015,
0.875637458, 0.639141079, 0.696479632, 0.954031849, 0.50925641, -0.50925641,
-0.954031849, -0.696479632, -0.639141079, -0.875637458, -0.814329015, -0.632264626,
-0.802820512, -0.968738879, -0.765676034, -0.664562475, -0.897723205, -0.928419527,
-0.676188057, -0.695656841, -0.896260999, -0.762429734, -0.603896038, -0.857877516,
-0.853079823, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Parece:
Coeficientes da janela de Hamming
0.08, 0.082285843, 0.089120656, 0.100436509, 0.116120943, 0.136018076, 0.159930164,
0.187619556, 0.218811064, 0.253194691, 0.290428719, 0.330143098, 0.371943129,
0.415413385, 0.460121838, 0.505624157, 0.551468118, 0.597198104, 0.64235963,
0.686503859, 0.729192067, 0.77, 0.808522089, 0.844375485, 0.877203861, 0.906680953,
0.932513806, 0.954445679, 0.972258606, 0.985775552, 0.99486218, 0.999428184,
0.999428184, 0.99486218, 0.985775552, 0.972258606, 0.954445679, 0.932513806,
0.906680953, 0.877203861, 0.844375485, 0.808522089, 0.77, 0.729192067, 0.686503859,
0.64235963, 0.597198104, 0.551468118, 0.505624157, 0.460121838, 0.415413385,
0.371943129, 0.330143098, 0.290428719, 0.253194691, 0.218811064, 0.187619556,
0.159930164, 0.136018076, 0.116120943, 0.100436509, 0.089120656, 0.082285843, 0.080.08,
0.082285843, 0.089120656, 0.100436509, 0.116120943, 0.136018076, 0.159930164,
0.187619556, 0.218811064, 0.253194691, 0.290428719, 0.330143098, 0.371943129,
0.415413385, 0.460121838, 0.505624157, 0.551468118, 0.597198104, 0.64235963,
0.686503859, 0.729192067, 0.77, 0.808522089, 0.844375485, 0.877203861, 0.906680953,
0.932513806, 0.954445679, 0.972258606, 0.985775552, 0.99486218, 0.999428184,
0.999428184, 0.99486218, 0.985775552, 0.972258606, 0.954445679, 0.932513806,
0.906680953, 0.877203861, 0.844375485, 0.808522089, 0.77, 0.729192067, 0.686503859,
0.64235963, 0.597198104, 0.551468118, 0.505624157, 0.460121838, 0.415413385,
0.371943129, 0.330143098, 0.290428719, 0.253194691, 0.218811064, 0.187619556,
0.159930164, 0.136018076, 0.116120943, 0.100436509, 0.089120656, 0.082285843, 0.08
Parece com isso
O produto deles (seria apenas um produto simples?)
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.354380777, 0.394728179, 0.305344425,
0.420455691, 0.53524537, 0.446861871, 0.464205711, 0.676996154, 0.691246868,
0.537313441, 0.646518073, 0.849781485, 0.727902068, 0.589595493, 0.77723281,
0.851346054, 0.63004965, 0.692901245, 0.953486318, 0.508965209, -0.506639943,
-0.940461272, -0.677158316, -0.610025441, -0.816544018, -0.738336608, -0.554624971,
-0.67788196, -0.783246782, -0.589570546, -0.484593685, -0.616290445, -0.596379223,
-0.403818226, -0.383632569, -0.453171212, -0.350810571, -0.250866497, -0.319081647,
-0.281638415, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Parece:
Representação no domínio da frequência
1.01978454171002, -1.04956742046721-14.885596686908i,
0.729587297164687+12.4883097743251i, -0.393281811348907-4.24261013057826i,
0.761581725234628+3.2398820477072i, -0.876737136684714-3.79393194973719i,
0.480276094694696+1.88418789653125i, -0.735142602781246-1.8175563772351i,
1.02811278581892+2.5331069394699i, -0.584707361656586-1.41705783059227i,
0.642189640425863+1.09157435002371i, -1.08027274688044-1.77950446999262i,
0.690373934734768+1.16057125940753i, -0.45786262480057-0.586349217392973i,
0.837117486838485+0.985681387258948i, -0.684335876271999-0.810862267851556i,
0.930190039748881+0.842491953501215i, -2.11497450796919-1.82531206712061i,
1.77660184883125+1.59539043421572i, -8.20687157856373E-003-0.123202767234891i,
-0.280149317662962-0.244195928734504i, -0.313777442633104-0.174757927010731i,
-5.83069102281942E-002+1.54514819958589E-002i, 0.211135948552966+0.12606544182717i,
0.227409826380236+7.86489707052085E-002i, 2.49029866186928E-003-3.26908578232317E-002i,
-0.204885728671642-7.60371335974082E-002i, -0.174609549526536-2.58285031988847E-002i,
4.55943100777029E-002+3.62216126377679E-002i, 0.205437067084294+3.66474457853982E-002i,
0.130866115437055-7.39089659931302E-003i, -8.90307098969982E-002-2.75195665163235E-
002i, -0.206016142964952, -8.90307098969848E-002+2.75195665163199E-002i,
0.130866115437044+7.39089659931835E-003i, 0.205437067084297-3.66474457854036E-002i,
4.55943100777004E-002-3.62216126377661E-002i, -0.174609549526531+2.58285031988801E-
002i, -0.204885728671643+7.60371335974132E-002i, 2.49029866187001E-
003+3.26908578232264E-002i, 0.227409826380234-7.86489707052067E-002i, 0.21113594855297-
0.126065441827174i, -5.83069102281978E-002-1.54514819958551E-002i,
-0.313777442633101+0.174757927010727i, -0.280149317662962+0.244195928734507i,
-8.20687157856043E-003+0.123202767234886i, 1.77660184883125-1.59539043421572i,
-2.11497450796919+1.82531206712061i, 0.930190039748879-0.842491953501215i,
-0.684335876271989+0.810862267851559i, 0.837117486838478-0.985681387258952i,
-0.457862624800567+0.586349217392971i, 0.690373934734765-1.16057125940753i,
-1.08027274688043+1.77950446999263i, 0.642189640425861-1.09157435002371i,
-0.584707361656583+1.41705783059227i, 1.02811278581891-2.5331069394699i,
-0.735142602781236+1.81755637723511i, 0.480276094694689-1.88418789653125i,
-0.876737136684699+3.79393194973719i, 0.76158172523462-3.2398820477072i,
-0.393281811348889+4.24261013057827i, 0.729587297164646-12.4883097743252i,
-1.04956742046715+14.885596686908i
Parece com isso:
Estes resultados são válidos? Porque ainda não pareço chegar a lugar algum!
Fiz mais duas experiências e pareço estar tentadoramente próximo dos resultados pretendidos, mas a solução tem a sensação de um hack para mim.
Experiência 5
0, 0.853079823, 0.857877516, 0.603896038, 0.762429734, 0.896260999, 0.695656841,
0.676188057, 0.928419527, 0.897723205, 0.664562475, 0.765676034, 0.968738879,
0.802820512, 0.632264626, 0.814329015, 0.875637458, 0.639141079, 0.696479632,
0.954031849, 0.50925641, -0.50925641, -0.954031849, -0.696479632, -0.639141079,
-0.875637458, -0.814329015, -0.632264626, -0.802820512, -0.968738879, -0.765676034,
-0.664562475, -0.897723205, -0.928419527, -0.676188057, -0.695656841, -0.896260999,
-0.762429734, -0.603896038, -0.857877516, -0.853079823.
Fiz uma interpolação linear e obtive 64 amostras da mesma. Eles se pareciam com o seguinte:
A representação no domínio da frequência comparada com a saída ideal desejada (Primeira experiência) é a seguinte:
Retirei a segunda metade do espaço da amostra quando os componentes se dobraram após o limite de Nyquist. Há uma pequena atenuação nas frequências de interesse, mas um piso de ruído é adicionado em todo o espectro. Explicações?
Experiência 6
Igual ao experimento 5 , mas 32 amostras interpoladas.
Comparação no domínio da frequência:
As proporções estão corretas, mas as magnitudes estão reduzidas pela metade! Por quê?
Portanto, posso deduzir, e posso estar errado (espero que esteja), que, se o número de amostras em um período completo de forma de onda não for uma potência de 2, a FFT do mesmo não revelará nada sem algum tipo de operação , isso me escapa no momento.
Como tenho muito pouco controle sobre a frequência de amostragem, quais são as opções disponíveis para recuperar os valores que injetei no domínio do tempo?