Isso é simples, pensei, mas minha abordagem ingênua levou a um resultado muito barulhento. Eu tenho este exemplo de tempos e posições em um arquivo chamado t_angle.txt:
0.768 -166.099892
0.837 -165.994148
0.898 -165.670052
0.958 -165.138245
1.025 -164.381218
1.084 -163.405838
1.144 -162.232704
1.213 -160.824051
1.268 -159.224854
1.337 -157.383270
1.398 -155.357666
1.458 -153.082809
1.524 -150.589943
1.584 -147.923012
1.644 -144.996872
1.713 -141.904221
1.768 -138.544807
1.837 -135.025749
1.896 -131.233063
1.957 -127.222366
2.024 -123.062325
2.084 -118.618355
2.144 -114.031906
2.212 -109.155006
2.271 -104.059753
2.332 -98.832321
2.399 -93.303795
2.459 -87.649956
2.520 -81.688499
2.588 -75.608597
2.643 -69.308281
2.706 -63.008308
2.774 -56.808586
2.833 -50.508270
2.894 -44.308548
2.962 -38.008575
3.021 -31.808510
3.082 -25.508537
3.151 -19.208565
3.210 -13.008499
3.269 -6.708527
3.337 -0.508461
3.397 5.791168
3.457 12.091141
3.525 18.291206
3.584 24.591179
3.645 30.791245
3.713 37.091217
3.768 43.291283
3.836 49.591255
3.896 55.891228
3.957 62.091293
4.026 68.391266
4.085 74.591331
4.146 80.891304
4.213 87.082100
4.268 92.961502
4.337 98.719368
4.397 104.172363
4.458 109.496956
4.518 114.523888
4.586 119.415550
4.647 124.088860
4.707 128.474464
4.775 132.714500
4.834 136.674385
4.894 140.481148
4.962 144.014626
5.017 147.388458
5.086 150.543938
5.146 153.436089
5.207 156.158638
5.276 158.624725
5.335 160.914001
5.394 162.984924
5.463 164.809685
5.519 166.447678
e deseja estimar velocidade e aceleração. Eu sei que a aceleração é constante, neste caso cerca de 55 graus / s ^ 2 até que a velocidade esteja em torno de 100 graus / s, então o acc é zero e a velocidade é constante. No final, a aceleração é de -55 graus / s ^ 2. Aqui está o código scilab que fornece estimativas muito barulhentas e inutilizáveis, especialmente da aceleração.
clf()
clear
M=fscanfMat('t_angle.txt');
t=M(:,1);
len=length(t);
x=M(:,2);
dt=diff(t);
dx=diff(x);
v=dx./dt;
dv=diff(v);
a=dv./dt(1:len-2);
subplot(311), title("position"),
plot(t,x,'b');
subplot(312), title("velocity"),
plot(t(1:len-1),v,'g');
subplot(313), title("acceleration"),
plot(t(1:len-2),a,'r');
Eu estava pensando em usar um filtro kalman para obter melhores estimativas. É apropriado aqui? Não sei como formular as equações do filtro, pouco experiente com os filtros kalman. Eu acho que o vetor de estado é velocidade e aceleração e sinal é posição. Ou existe um método mais simples que o KF, que fornece resultados úteis.
Todas as sugestões são bem-vindas!