Como exatamente é feita a restrição de centralização da soma (ou média) para splines (também wrt gam de mgcv)?


8

O processo de geração de dados é: y=sin(x+I(d=0))+sin(x+4I(d=1))+I(d=0)z2+3I(d=1)z2+N(0,1)

Deixe que ser uma sequência de a de comprimento e ser o factor correspondente . Faça todas as combinações possíveis de para calcular : - 4 4 100 d d { 0 , 1 } x , z , d yx,z44100dd{0,1}x,z,dyinsira a descrição da imagem aqui

Usar a B-spline-Base (não centrada) para para cada nível de não será viável pela propriedade de parição da unidade (as linhas somam 1). Esse modelo não será identificável (mesmo sem interceptação).dx,zd

Exemplo: (Configuração: 5 intervalos internos do nó (distribuídos uniformemente), B-Spline de grau 2, a splinefunção é personalizada)

# drawing the sequence
n <- 100
x <- seq(-4,4,length.out=n)
z <- seq(-4,4,length.out=n)
d <- as.factor(0:1)
data <- CJ(x=x,z=z,d=d)
set.seed(100)

# setting up the model
data[,y := sin(x+I(d==0)) + sin(x+4*I(d==1)) + I(d==0)*z^2 + 3*I(d==1)*z^2 + rnorm(n,0,1)]

# creating the uncentered B-Spline-Basis for x and z
X <- data[,spline(x,min(x),max(x),5,2,by=d,intercept=FALSE)]
> head(X)
     x.1d0 x.2d0 x.3d0 x.4d0 x.5d0 x.6d0 x.7d0 x.1d1 x.2d1 x.3d1 x.4d1 x.5d1 x.6d1 x.7d1
[1,]   0.5   0.5     0     0     0     0     0   0.0   0.0     0     0     0     0     0
[2,]   0.0   0.0     0     0     0     0     0   0.5   0.5     0     0     0     0     0
[3,]   0.5   0.5     0     0     0     0     0   0.0   0.0     0     0     0     0     0

Z <- data[,spline(z,min(z),max(z),5,2,by=d)]
head(Z)
         z.1d0     z.2d0      z.3d0 z.4d0 z.5d0 z.6d0 z.7d0     z.1d1     z.2d1      z.3d1 z.4d1 z.5d1 z.6d1
[1,] 0.5000000 0.5000000 0.00000000     0     0     0     0 0.0000000 0.0000000 0.00000000     0     0     0
[2,] 0.0000000 0.0000000 0.00000000     0     0     0     0 0.5000000 0.5000000 0.00000000     0     0     0
[3,] 0.4507703 0.5479543 0.00127538     0     0     0     0 0.0000000 0.0000000 0.00000000     0     0     0

     z.7d1
[1,]     0
[2,]     0
[3,]     0

# lm will drop one spline-column for each factor 
lm(y ~ -1+X+Z,data=data)

Call:
lm(formula = y ~ -1 + X + Z, data = data)

Coefficients:
 Xx.1d0   Xx.2d0   Xx.3d0   Xx.4d0   Xx.5d0   Xx.6d0   Xx.7d0   Xx.1d1   Xx.2d1   Xx.3d1   Xx.4d1   Xx.5d1  
 23.510   19.912   18.860   22.177   23.080   19.794   18.727   68.572   69.185   67.693   67.082   68.642  
 Xx.6d1   Xx.7d1   Zz.1d0   Zz.2d0   Zz.3d0   Zz.4d0   Zz.5d0   Zz.6d0   Zz.7d0   Zz.1d1   Zz.2d1   Zz.3d1  
 69.159   67.496    1.381  -11.872  -19.361  -21.835  -19.698  -11.244       NA   -1.329  -38.449  -62.254  
 Zz.4d1   Zz.5d1   Zz.6d1   Zz.7d1  
-69.993  -61.438  -39.754       NA

Para superar esse problema, Wood, Modelos Aditivos Generalizados: Uma Introdução com R , página 163-164 propõe a restrição de centralização da soma (ou média):

1TX~jβ~j=0

Isso pode ser feito por reparametrização se uma matriz for encontrada de forma queZ

1TX~jZ=0

C t = ( 1 T ~ X j ) t = ~ X t j 1Z matriz pode ser encontrada pela decomposição QR da matriz de restrição .CT=(1TX~j)T=X~jT1

Observe que é pela partição da unidade-propriedade.1X~jT11

A versão centralizada / restrita da minha B-Spline-Matrix é:

X <- data[,spline(x,min(x),max(x),5,2,by=d,intercept=TRUE)]
head(X)
         x.1d0      x.2d0      x.3d0      x.4d0      x.5d0       x.6d0     x.1d1      x.2d1      x.3d1      x.4d1
[1,] 0.2271923 -0.3225655 -0.3225655 -0.3225655 -0.2728077 -0.05790256 0.0000000  0.0000000  0.0000000  0.0000000
[2,] 0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.00000000 0.2271923 -0.3225655 -0.3225655 -0.3225655
[3,] 0.2271923 -0.3225655 -0.3225655 -0.3225655 -0.2728077 -0.05790256 0.0000000  0.0000000  0.0000000  0.0000000

          x.5d1       x.6d1
[1,]  0.0000000  0.00000000
[2,] -0.2728077 -0.05790256
[3,]  0.0000000  0.00000000

Z <- data[,spline(z,min(z),max(z),5,2,by=d,intercept=TRUE)]
head(Z)
         z.1d0      z.2d0      z.3d0      z.4d0      z.5d0       z.6d0     z.1d1      z.2d1      z.3d1      z.4d1
[1,] 0.2271923 -0.3225655 -0.3225655 -0.3225655 -0.2728077 -0.05790256 0.0000000  0.0000000  0.0000000  0.0000000
[2,] 0.0000000  0.0000000  0.0000000  0.0000000  0.0000000  0.00000000 0.2271923 -0.3225655 -0.3225655 -0.3225655
[3,] 0.2875283 -0.3066501 -0.3079255 -0.3079255 -0.2604260 -0.05527458 0.0000000  0.0000000  0.0000000  0.0000000

          z.5d1       z.6d1
[1,]  0.0000000  0.00000000
[2,] -0.2728077 -0.05790256
[3,]  0.0000000  0.00000000

Minha pergunta é: mesmo que o ajuste seja muito semelhante, por que minhas colunas B-Spline restritas diferem do que o gam fornece? Do que eu senti falta?

# comparing with gam from mgcv
mod.gam <- gam(y~d+s(x,bs="ps",by=d,k=7)+s(z,bs="ps",by=d,k=7),data=data)
X.gam <- model.matrix(mod.gam)
head(X.gam)
  (Intercept) d1 s(x):d0.1   s(x):d0.2  s(x):d0.3  s(x):d0.4  s(x):d0.5   s(x):d0.6 s(x):d1.1   s(x):d1.2
1           1  0 0.5465301 -0.05732768 -0.2351708 -0.2259983 -0.1201207 -0.01043987 0.0000000  0.00000000
2           1  1 0.0000000  0.00000000  0.0000000  0.0000000  0.0000000  0.00000000 0.5465301 -0.05732768
3           1  0 0.5465301 -0.05732768 -0.2351708 -0.2259983 -0.1201207 -0.01043987 0.0000000  0.00000000

   s(x):d1.3  s(x):d1.4  s(x):d1.5   s(x):d1.6 s(z):d0.1    s(z):d0.2  s(z):d0.3  s(z):d0.4  s(z):d0.5
1  0.0000000  0.0000000  0.0000000  0.00000000 0.5465301 -0.057327680 -0.2351708 -0.2259983 -0.1201207
2 -0.2351708 -0.2259983 -0.1201207 -0.01043987 0.0000000  0.000000000  0.0000000  0.0000000  0.0000000
3  0.0000000  0.0000000  0.0000000  0.00000000 0.5471108 -0.031559945 -0.2302910 -0.2213227 -0.1176356

    s(z):d0.6 s(z):d1.1    s(z):d1.2  s(z):d1.3  s(z):d1.4  s(z):d1.5   s(z):d1.6
1 -0.01043987 0.0000000  0.000000000  0.0000000  0.0000000  0.0000000  0.00000000
2  0.00000000 0.5465301 -0.057327680 -0.2351708 -0.2259983 -0.1201207 -0.01043987
3 -0.01022388 0.0000000  0.000000000  0.0000000  0.0000000  0.0000000  0.00000000

A linha pontilhada corresponde ao meu ajuste, a linha reta à versão gam insira a descrição da imagem aqui


Verifique tolstoy.newcastle.edu.au/R/e6/help/09/02/4081.html Acho que isso vai ajudar.
Nemo

Respostas:


1

Aqui está um exemplo mais simples usando o link do Nemo. A pergunta que eu respondo é

Como exatamente é feita a restrição de centralização da soma (ou média) para splines (também wrt gam de mgcv)?

Eu respondo isso, pois este é o título e como

Minha pergunta é : mesmo que o ajuste seja muito semelhante, por que minhas colunas B-Spline restritas diferem do que o gam fornece? Do que eu senti falta?

é bastante incerto pelo motivo que forneço no final. Aqui está a resposta para a pergunta acima

# simulate data
library(splines)
set.seed(100)
n <- 1000
x <- seq(-4,4,length.out=n)
df <- expand.grid(d = factor(c(0, 1)), x = x)
df <- cbind(y = sin(x) + rnorm(length(df),0,1), df)
x <- df$x

# we start the other way and find the knots `mgcv` uses to make sure we have
# the same knots...
library(mgcv)
mod_gam <- gam(y ~ s(x, bs="ps", k = 7), data = df)
knots <- mod_gam$smooth[[1]]$knots

# find constrained basis as OP describes
X <- splineDesign(knots = knots, x)
C <- rep(1, nrow(X)) %*% X
qrc <- qr(t(C))
Z <- qr.Q(qrc,complete=TRUE)[,(nrow(C)+1):ncol(C)]
XZ <- X%*%Z
rep(1, nrow(X)) %*% XZ # all ~ zero as they should
#R              [,1]          [,2]          [,3]          [,4]          [,5]          [,6]
#R [1,] 2.239042e-13 -2.112754e-13 -3.225198e-13 -6.993017e-14 -2.011724e-13 -3.674838e-14

# now we get roughtly the same basis
all.equal(model.matrix(mod_gam)[, -1], XZ, check.attributes = FALSE)
#R [1] TRUE

# if you want to use a binary by value
mod_gam <- gam(y ~ s(x, bs="ps", k = 7, by = d), data = df)
all.equal(
  model.matrix(mod_gam)[, -1],
  cbind(XZ * (df$d == 0), XZ * (df$d == 1)), check.attributes = FALSE)
#R [1] TRUE

Você pode fazer melhor em termos de velocidade de computação do que explicitamente calcular

Z <- qr.Q(qrc,complete=TRUE)[,(nrow(C)+1):ncol(C)]
XZ <- X%*%Z

conforme descrito na página 211 de

Wood, Simon N .. Modelos aditivos generalizados: uma introdução com R, segunda edição (Chapman & Hall / CRC Texts in Statistical Science). CRC Pressione.


Existem alguns problemas no código do OP

# drawing the sequence
n <- 100
x <- seq(-4,4,length.out=n)
z <- seq(-4,4,length.out=n)
d <- as.factor(0:1)
library(data.table) # OP did not load the library
data <- CJ(x=x,z=z,d=d)
set.seed(100)

# setting up the model
data[, y :=
     # OP only simulate n random terms -- there are 20000 rows
     sin(x+I(d==0)) + sin(x+4*I(d==1)) + I(d==0)*z^2 + 3*I(d==1)*z^2 + rnorm(n,0,1)]

# creating the uncentered B-Spline-Basis for x and z
X <- data[,spline(x,min(x),max(x),5,2,by=d,intercept=FALSE)] # gets an error
#R Error in spline(x, min(x), max(x), 5, 2, by = d, intercept = FALSE) :
#R   unused arguments (by = d, intercept = FALSE)
str(formals(spline)) # here are the formals for `stats::spline`
#R Dotted pair list of 8
#R $ x     : symbol
#R $ y     : NULL
#R $ n     : language 3 * length(x)
#R $ method: chr "fmm"
#R $ xmin  : language min(x)
#R $ xmax  : language max(x)
#R $ xout  : symbol
#R $ ties  : symbol mean

Para

Minha pergunta é : mesmo que o ajuste seja muito semelhante, por que minhas colunas B-Spline restritas diferem do que o gam fornece? Do que eu senti falta?

então eu não entendo como você esperaria obter o mesmo. Você pode ter usado nós diferentes e não vejo como a splinefunção produziria os resultados corretos aqui.

A linha pontilhada corresponde ao meu ajuste, a linha reta à versão gam

Se o último estiver equipado lm, não será penalizado, portanto os resultados deverão diferir?


Desculpe, o OP escreve: ... a splinefunção é personalizada
Benjamin Christoffersen
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.