I think we could use method of moments estimation to estimate the parameters of the Binomial distribution by the mean and the variance.
Using the method of moments estimation to estimate The parameters p and m.
[{\hat{p}}_n=\frac{\overline{X}-S^2}{\overline{X}}][\hat{m}_n=\frac{\overline{X}^2}{\overline{X}-S^2}]
Proof
The estimators of the parameters m and p by the Method of Moments are the solutions of the system of equations
mp=X¯,mp(1−p)=S2.
Hence our equations for the method of moments are:
[\overline{X}=mp]
[S^2=mp (1-p).]
Simple arithmetic shows:
[S^2 = mp\left(1 - p\right) = \bar{X}\left(1 - p\right)]
[S^2=\bar{X}-\bar{X} p]
[\bar{X}p=\bar{X}-S^2, \mbox{ therefore } \hat{p}=\frac{\bar{X}-S^2}{\bar{X}}.]
Then,
[\bar{X} = mp, \mbox{ that is, } m \left(\frac{\bar{X}-S^2}{\bar{X}}\right)]
[\bar{X}=m\left(\frac{\bar{X}-S^2}{\bar{X}}\right), \mbox{ or } \hat{m}=\frac{\bar{X}^2}{\bar{X}-S^2}. ]