Os recursos listados por outras pessoas são certamente úteis, mas adicionarei o seguinte: o classificador "melhor" provavelmente será específico ao contexto e aos dados. Em uma recente incursão na avaliação de diferentes classificadores binários, encontrei uma Árvore de regressão impulsionada para funcionar consistentemente melhor do que outros métodos aos quais tive acesso. O principal para mim foi aprender a usar as ferramentas de mineração de dados da Orange . Eles têm uma ótima documentação para começar a explorar esses métodos com seus dados. Por exemplo, aqui está um pequeno script Python que escrevi para avaliar a qualidade de vários classificadores em várias medidas de precisão usando a validação cruzada k-fold.
import orange, orngTest, orngStat, orngTree , orngEnsemble, orngSVM, orngLR
import numpy as np
data = orange.ExampleTable("performance_orange_2.tab")
bayes = orange.BayesLearner(name="Naive Bayes")
svm = orngSVM.SVMLearner(name="SVM")
tree = orngTree.TreeLearner(mForPruning=2, name="Regression Tree")
bs = orngEnsemble.BoostedLearner(tree, name="Boosted Tree")
bg = orngEnsemble.BaggedLearner(tree, name="Bagged Tree")
forest = orngEnsemble.RandomForestLearner(trees=100, name="Random Forest")
learners = [bayes, svm, tree, bs, bg, forest]
results = orngTest.crossValidation(learners, data, folds=10)
cm = orngStat.computeConfusionMatrices(results,
classIndex=data.domain.classVar.values.index('1'))
stat = (('ClsAcc', 'CA(results)'),
('Sens', 'sens(cm)'),
('Spec', 'spec(cm)'),
('AUC', 'AUC(results)'),
('Info', 'IS(results)'),
('Brier', 'BrierScore(results)'))
scores = [eval("orngStat." + s[1]) for s in stat]
print "Learner " + "".join(["%-9s" % s[0] for s in stat])
print "-----------------------------------------------------------------"
for (i, L) in enumerate(learners):
print "%-15s " % L.name + "".join(["%5.3f " % s[i] for s in scores])
print "\n\n"
measure = orngEnsemble.MeasureAttribute_randomForests(trees=100)
print "Random Forest Variable Importance"
print "---------------------------------"
imps = measure.importances(data)
for i,imp in enumerate(imps):
print "%-20s %6.2f" % (data.domain.attributes[i].name, imp)
print '\n\n'
print 'Predictions on new data...'
bs_classifier = bs(data)
new_data = orange.ExampleTable('performance_orange_new.tab')
for obs in new_data:
print bs_classifier(obs, orange.GetBoth)
Quando executo esse código nos meus dados, recebo uma saída como
In [1]: %run binary_predict.py
Learner ClsAcc Sens Spec AUC Info Brier
-----------------------------------------------------------------
Naive Bayes 0.556 0.444 0.643 0.756 0.516 0.613
SVM 0.611 0.667 0.714 0.851 0.264 0.582
Regression Tree 0.736 0.778 0.786 0.836 0.945 0.527
Boosted Tree 0.778 0.778 0.857 0.911 1.074 0.444
Bagged Tree 0.653 0.667 0.786 0.816 0.564 0.547
Random Forest 0.736 0.667 0.929 0.940 0.455 0.512
Random Forest Variable Importance
---------------------------------
Mileage 2.34
Trade_Area_QI 2.82
Site_Score 8.76
Você pode fazer muito mais com os objetos Orange para examinar o desempenho e fazer comparações. Eu achei esse pacote extremamente útil ao escrever uma pequena quantidade de código para realmente aplicar métodos aos meus dados com uma API consistente e abstração de problemas (ou seja, eu não precisei usar seis pacotes diferentes de seis autores diferentes, cada um com seu próprio abordagem ao design e documentação da API, etc).