" " significa "distribuído aproximadamente como". É frequentemente usado como mão curta para algo como∼˙
comon→∞n--√( x¯- μ ) / σ→dN( 0 , 1 )n → ∞
isto é, convergência na distribuição, mas você é preguiçoso demais para escrever o necessário para tornar a afirmação matematicamente rigorosa. n → ∞
(É claro que, na declaração acima, este é exatamente distribuído se o . Mas se x i não são normais, seria apenas convergem em distribuição de N ( 0 , 1 ) . )xEu∼i i dN( μ , σ)xEuN( 0 , 1 )
Durante a faculdade, um dos meus professores passou por um tumulto técnico, mas justificado, sobre como essa notação é frequentemente usada de maneira abusiva. Por exemplo, se você escrever
p^∼˙N( p , p ( 1 - p ) / n---------√)
onde p é o padrão MLE para uma distribuição binomial, isso parece implicar que p é aproximadamente normal para qualquer n , que é, naturalmente, não é verdade. Nós não foram autorizados a utilização ˙ ~ notação em sua classe, mas escreveu tudo no bom "converge em distribuição" notação.p^p^∼˙
Nenhum dos meus outros professores se importava.