Acontece que um artigo da Econometrica de Kenneth Small e Harvey Rosen mostrou isso em 1981, mas em um contexto muito especializado, de modo que o resultado requer muita escavação, sem mencionar algum treinamento em economia. Decidi provar isso da maneira que achar mais acessível.
Prova : Seja J o número de alternativas. Dependendo dos valores do vetorϵ={ϵ1,...,ϵJ} , a função assume valores diferentes. Primeiro, foque nos valores de modo que . Ou seja, integraremos no conjunto :maxi(δi+ϵi)ϵmaxi(δi+ϵi)=δ1+ϵ1δ1+ϵ1M1≡{ϵ:δ1+ϵ1>δj+ϵj,j≠1}
Eϵ∈M1[maxi(δi+ϵi)]=∫∞−∞(δ1+ϵ1)f(ϵ1)[∫δ1+ϵ1−δ2−∞...∫δ1+ϵ1−δJ−∞f(ϵ2)...f(ϵJ)dϵ2...dϵJ]dϵ1=∫∞−∞(δ1+ϵ1)f(ϵ1)(∫δ1+ϵ1−δ2−∞f(ϵ2)dϵ2)...(∫δ1+ϵ1−δJ−∞f(ϵJ)dϵJ)dϵ1=∫∞−∞(δ1+ϵ1)f(ϵ1)F(δ1+ϵ1−δ2)...F(δ1+ϵ1−δJ)dϵ1
O termo acima é o primeiro de desses termos em . Especificamente,JE[maxi(δi+ϵi)]
E[maxi(δi+ϵi)]=∑iEϵ∈Mi[maxi(δi+ϵi)].
Agora aplicamos a forma funcional da distribuição Gumbel. Isto dá
===Eϵ∈Mi[maxi(δi+ϵi)]=∫∞−∞(δi+ϵi)eμ−ϵie−eμ−ϵi∏j≠ie−eμ−ϵi+δj−δidϵi∫∞−∞(δi+ϵi)eμ−ϵi∏je−eμ−ϵi+δj−δidϵi∫∞−∞(δi+ϵi)eμ−ϵiexp{∑j−eμ−ϵi+δj−δi}dϵi∫∞−∞(δi+ϵi)eμ−ϵiexp{−eμ−ϵi∑jeδj−δi}dϵi
onde a segunda etapa vem da coleta de um dos termos exponenciados no produto, junto com o fato de que δj−δi=0 se .i=j
Agora definimos e fazemos a substituição , de modo que e . Observe que, conforme aproxima do infinito, aproxima de 0, e como aproxima do infinito negativo, aproxima do infinito. Di≡∑jeδj−δix=Dieμ−ϵidx=−Dieμ−ϵidϵi⇒−dxDi=eμ−ϵidϵiϵi=μ−log(xDi)ϵixϵix
==Eϵ∈Mi[maxi(δi+ϵi)]=∫0∞(δi+μ−log[xDi])(−1Di)exp{−x}dx1Di∫∞0(δi+μ−log[xDi])e−xdxδi+μDi∫∞0e−xdx−1Di∫∞0log[x]e−xdx+log[Di]Di∫∞0e−xdx
A Função Gamma é definida como . Para valores de que são números inteiros positivos, isso é equivalente a, então . Além disso, sabe-se que a constante de Euler – Mascheroni satisfazΓ(t)=∫∞0xt−1e−xdxtΓ(t)=(t−1)!Γ(1)=0!=1γ≈0.57722
γ=−∫∞0log[x]e−xdx.
A aplicação desses fatos dá
Eϵ∈Mi[maxi(δi+ϵi)]=δi+μ+γ+log[Di]Di
Então somamos para obteri
E[maxi(δi+ϵi)]=∑iδi+μ+γ+log[Di]Di
Lembre-se de que . Observe que as probabilidades familiares de escolha do logit são inversas dos 's, ou seja, . Observe também que . Então nós temosDi=∑jeδj−δi=∑jeδjeδiPi=eδi∑jδjDiPi=1/Di∑iPi=1
E[maxi(δi+ϵi)]======∑iPi(δi+μ+γ+log[Di])(μ+γ)∑iPi+∑iPiδi+∑iPilog[Di]μ+γ+∑iPiδi+∑iPilog[∑jeδjeδi]μ+γ+∑iPiδi+∑iPilog[∑jeδj]−∑iPilog[eδi]μ+γ+∑iPiδi+log[∑jeδj]∑iPi−∑iPiδiμ+γ+log[∑jexp{δj}].
QED