De modo nenhum. A magnitude dos coeficientes depende diretamente das escalas selecionadas para as variáveis, o que é uma decisão de modelagem um tanto arbitrária.
Para ver isso, considere um modelo de regressão linear que preveja a largura da pétala de uma íris (em centímetros), considerando seu comprimento (em centímetros):
summary(lm(Petal.Width~Petal.Length, data=iris))
# Call:
# lm(formula = Petal.Width ~ Petal.Length, data = iris)
#
# Residuals:
# Min 1Q Median 3Q Max
# -0.56515 -0.12358 -0.01898 0.13288 0.64272
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.363076 0.039762 -9.131 4.7e-16 ***
# Petal.Length 0.415755 0.009582 43.387 < 2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.2065 on 148 degrees of freedom
# Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
# F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16
Nosso modelo atinge um valor de R ^ 2 ajustado de 0,9266 e atribui o valor do coeficiente 0,415755 à variável Petal.Length.
No entanto, a escolha de definir Petal.Length em centímetros foi bastante arbitrária, e poderíamos ter definido a variável em metros:
iris$Petal.Length.Meters <- iris$Petal.Length / 100
summary(lm(Petal.Width~Petal.Length.Meters, data=iris))
# Call:
# lm(formula = Petal.Width ~ Petal.Length.Meters, data = iris)
#
# Residuals:
# Min 1Q Median 3Q Max
# -0.56515 -0.12358 -0.01898 0.13288 0.64272
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.36308 0.03976 -9.131 4.7e-16 ***
# Petal.Length.Meters 41.57554 0.95824 43.387 < 2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.2065 on 148 degrees of freedom
# Multiple R-squared: 0.9271, Adjusted R-squared: 0.9266
# F-statistic: 1882 on 1 and 148 DF, p-value: < 2.2e-16
Obviamente, isso realmente não afeta o modelo ajustado - simplesmente atribuímos um coeficiente 100x maior a Petal.Length.Meters (41.57554) do que ao Petal.Length (0.415755). Todas as outras propriedades do modelo (R ^ 2 ajustado, estatística t, valores p, etc.) são idênticas.
Geralmente, ao ajustar modelos lineares regularizados, primeiro normalizamos as variáveis (por exemplo, para ter média 0 e variação unitária) para evitar favorecer algumas variáveis em detrimento de outras com base nas escalas selecionadas.
Assumindo Dados Normalizados
Mesmo se você normalizou todas as variáveis, as variáveis com coeficientes mais altos ainda podem não ser tão úteis nas previsões, porque as variáveis independentes raramente são definidas (apresentam baixa variação). Como exemplo, considere um conjunto de dados com a variável dependente Z e as variáveis independentes X e Y assumindo valores binários
set.seed(144)
dat <- data.frame(X=rep(c(0, 1), each=50000),
Y=rep(c(0, 1), c(1000, 99000)))
dat$Z <- dat$X + 2*dat$Y + rnorm(100000)
Por construção, o coeficiente para Y é aproximadamente duas vezes maior que o coeficiente para X quando ambos são usados para prever Z via regressão linear:
summary(lm(Z~X+Y, data=dat))
# Call:
# lm(formula = Z ~ X + Y, data = dat)
#
# Residuals:
# Min 1Q Median 3Q Max
# -4.4991 -0.6749 -0.0056 0.6723 4.7342
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.094793 0.031598 -3.00 0.0027 **
# X 0.999435 0.006352 157.35 <2e-16 ***
# Y 2.099410 0.031919 65.77 <2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 0.9992 on 99997 degrees of freedom
# Multiple R-squared: 0.2394, Adjusted R-squared: 0.2394
# F-statistic: 1.574e+04 on 2 and 99997 DF, p-value: < 2.2e-16
Ainda assim, X explica mais da variação em Z do que Y (o modelo de regressão linear que prevê Z com X tem valor de R ^ 2 0,2065, enquanto o modelo de regressão linear que prevê Z com Y tem valor de R ^ 2 0,0511):
summary(lm(Z~X, data=dat))
# Call:
# lm(formula = Z ~ X, data = dat)
#
# Residuals:
# Min 1Q Median 3Q Max
# -5.2587 -0.6759 0.0038 0.6842 4.7342
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.962629 0.004564 430.0 <2e-16 ***
# X 1.041424 0.006455 161.3 <2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 1.021 on 99998 degrees of freedom
# Multiple R-squared: 0.2065, Adjusted R-squared: 0.2065
# F-statistic: 2.603e+04 on 1 and 99998 DF, p-value: < 2.2e-16
versus:
summary(lm(Z~Y, data=dat))
# Call:
# lm(formula = Z ~ Y, data = dat)
#
# Residuals:
# Min 1Q Median 3Q Max
# -5.0038 -0.7638 -0.0007 0.7610 5.2288
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.09479 0.03529 -2.686 0.00724 **
# Y 2.60418 0.03547 73.416 < 2e-16 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 1.116 on 99998 degrees of freedom
# Multiple R-squared: 0.05114, Adjusted R-squared: 0.05113
# F-statistic: 5390 on 1 and 99998 DF, p-value: < 2.2e-16
O caso da multicolinearidade
Um terceiro caso em que grandes valores de coeficiente podem enganar seria no caso de multicolinearidade significativa entre variáveis. Como exemplo, considere um conjunto de dados em que X e Y são altamente correlacionados, mas W não é altamente correlacionado aos outros dois; nós estamos tentando prever Z:
set.seed(144)
dat <- data.frame(W=rnorm(100000),
X=rnorm(100000))
dat$Y <- dat$X + rnorm(100000, 0, 0.001)
dat$Z <- 2*dat$W+10*dat$X-11*dat$Y + rnorm(100000)
cor(dat)
# W X Y Z
# W 1.000000e+00 5.191809e-05 5.200434e-05 0.8161636
# X 5.191809e-05 1.000000e+00 9.999995e-01 -0.4079183
# Y 5.200434e-05 9.999995e-01 1.000000e+00 -0.4079246
# Z 8.161636e-01 -4.079183e-01 -4.079246e-01 1.0000000
Essas variáveis têm praticamente a mesma média (0) e variância (~ 1), e a regressão linear atribui valores de coeficiente muito mais altos (em valor absoluto) a X (aproximadamente 15) e Y (aproximadamente -16) do que a W ( aproximadamente 2):
summary(lm(Z~W+X+Y, data=dat))
# Call:
# lm(formula = Z ~ W + X + Y, data = dat)
#
# Residuals:
# Min 1Q Median 3Q Max
# -4.1886 -0.6760 0.0026 0.6679 4.2232
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) 1.831e-04 3.170e-03 0.058 0.954
# W 2.001e+00 3.172e-03 630.811 < 2e-16 ***
# X 1.509e+01 3.177e+00 4.748 2.05e-06 ***
# Y -1.609e+01 3.177e+00 -5.063 4.13e-07 ***
# ---
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#
# Residual standard error: 1.002 on 99996 degrees of freedom
# Multiple R-squared: 0.8326, Adjusted R-squared: 0.8326
# F-statistic: 1.658e+05 on 3 and 99996 DF, p-value: < 2.2e-16
Ainda assim, entre as três variáveis no modelo W é a mais importante: se você remover W do modelo completo, o R ^ 2 cairá de 0,833 para 0,166, enquanto que se você soltar X ou Y, o R ^ 2 permanecerá praticamente inalterado.