Pelo que sei, não podemos executar uma regressão ordinária de mínimos quadrados em R ao usar dados ponderados e o survey
pacote. Aqui, temos que usar svyglm()
, que em vez disso executa um modelo linear generalizado (que pode ser a mesma coisa? Estou confuso aqui em termos do que é diferente).
svyglm
fornecerá um modelo linear se você usar o family = gaussian()
que parece ser o padrão da vinheta da pesquisa (na versão 3.32-1). Veja o exemplo onde eles encontram o regmodel
.
Parece que o pacote apenas garante que você use os pesos corretos quando chamar glm
. Assim, se o seu resultado for contínuo e você assumir que ele é normalmente distribuído por iid, você deve usá-lo family = gaussian()
. O resultado é um modelo linear ponderado. Esta resposta
Por que não podemos executar o OLS no survey
pacote, enquanto parece que isso é possível com dados ponderados no Stata?
afirmando que você realmente pode fazer isso com o survey
pacote. Quanto à seguinte pergunta
Qual é a diferença de interpretação entre o desvio de um modelo linear generalizado e um valor do quadrado r?
R2family = gaussian()
> set.seed(42293888)
> x <- (-4):5
> y <- 2 + x + rnorm(length(x))
> org <- data.frame(x = x, y = y, weights = 1:10)
>
> # show data and fit model. Notice the R-squared
> head(org)
x y weights
1 -4 0.4963671 1
2 -3 -0.5675720 2
3 -2 -0.3615302 3
4 -1 0.7091697 4
5 0 0.6485203 5
6 1 3.8495979 6
> summary(lm(y ~ x, org, weights = weights))
Call:
lm(formula = y ~ x, data = org, weights = weights)
Weighted Residuals:
Min 1Q Median 3Q Max
-3.1693 -0.4463 0.2017 0.9100 2.9667
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.7368 0.3514 4.942 0.00113 **
x 0.9016 0.1111 8.113 3.95e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 2.019 on 8 degrees of freedom
Multiple R-squared: 0.8916, Adjusted R-squared: 0.8781
F-statistic: 65.83 on 1 and 8 DF, p-value: 3.946e-05
>
> # make redundant data set with redundant rows
> idx <- unlist(mapply(rep, x = 1:nrow(org), times = org$weights))
> org_redundant <- org[idx, ]
> head(org_redundant)
x y weights
1 -4 0.4963671 1
2 -3 -0.5675720 2
2.1 -3 -0.5675720 2
3 -2 -0.3615302 3
3.1 -2 -0.3615302 3
3.2 -2 -0.3615302 3
>
> # fit model and notice the same R-squared
> summary(lm(y ~ x, org_redundant))
Call:
lm(formula = y ~ x, data = org_redundant)
Residuals:
Min 1Q Median 3Q Max
-1.19789 -0.29506 -0.05435 0.33131 2.36610
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.73680 0.13653 12.72 <2e-16 ***
x 0.90163 0.04318 20.88 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7843 on 53 degrees of freedom
Multiple R-squared: 0.8916, Adjusted R-squared: 0.8896
F-statistic: 436.1 on 1 and 53 DF, p-value: < 2.2e-16
>
> # glm gives you the same with family = gaussian()
> # just compute the R^2 from the deviances. See
> # /stats//a/46358/81865
> fit <- glm(y ~ x, family = gaussian(), org_redundant)
> fit$coefficients
(Intercept) x
1.7368017 0.9016347
> 1 - fit$deviance / fit$null.deviance
[1] 0.8916387
O desvio é apenas a soma dos erros quadrados quando você usa family = gaussian()
.
Ressalvas
Suponho que você queira um modelo linear da sua pergunta. Além disso, nunca usei o survey
pacote, mas o examinei rapidamente e fiz suposições sobre o que ele faz, que afirmo em minha resposta.