Além da resposta do @ gung, tentarei fornecer um exemplo do que a anova
função realmente testa. Espero que isso permita que você decida quais testes são adequados para as hipóteses que você está interessado em testar.
yx1 1x2x3my.mod <- glm(y~x1+x2+x3, family="binomial")
anova(my.mod, test="Chisq")
glm(y~1, family="binomial")
vs. glm(y~x1, family="binomial")
glm(y~x1, family="binomial")
vs. glm(y~x1+x2, family="binomial")
glm(y~x1+x2, family="binomial")
vs. glm(y~x1+x2+x3, family="binomial")
Portanto, ele compara sequencialmente o modelo menor com o próximo modelo mais complexo, adicionando uma variável em cada etapa. Cada uma dessas comparações é feita por meio de um teste de razão de verossimilhança (teste LR; veja o exemplo abaixo). Que eu saiba, essas hipóteses raramente são de interesse, mas isso deve ser decidido por você.
Aqui está um exemplo em R
:
mydata <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
mydata$rank <- factor(mydata$rank)
my.mod <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
summary(my.mod)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -3.989979 1.139951 -3.500 0.000465 ***
gre 0.002264 0.001094 2.070 0.038465 *
gpa 0.804038 0.331819 2.423 0.015388 *
rank2 -0.675443 0.316490 -2.134 0.032829 *
rank3 -1.340204 0.345306 -3.881 0.000104 ***
rank4 -1.551464 0.417832 -3.713 0.000205 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# The sequential analysis
anova(my.mod, test="Chisq")
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 399 499.98
gre 1 13.9204 398 486.06 0.0001907 ***
gpa 1 5.7122 397 480.34 0.0168478 *
rank 3 21.8265 394 458.52 7.088e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
# We can make the comparisons by hand (adding a variable in each step)
# model only the intercept
mod1 <- glm(admit ~ 1, data = mydata, family = "binomial")
# model with intercept + gre
mod2 <- glm(admit ~ gre, data = mydata, family = "binomial")
# model with intercept + gre + gpa
mod3 <- glm(admit ~ gre + gpa, data = mydata, family = "binomial")
# model containing all variables (full model)
mod4 <- glm(admit ~ gre + gpa + rank, data = mydata, family = "binomial")
anova(mod1, mod2, test="LRT")
Model 1: admit ~ 1
Model 2: admit ~ gre
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 399 499.98
2 398 486.06 1 13.92 0.0001907 ***
anova(mod2, mod3, test="LRT")
Model 1: admit ~ gre
Model 2: admit ~ gre + gpa
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 398 486.06
2 397 480.34 1 5.7122 0.01685 *
anova(mod3, mod4, test="LRT")
Model 1: admit ~ gre + gpa
Model 2: admit ~ gre + gpa + rank
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 397 480.34
2 394 458.52 3 21.826 7.088e-05 ***
psummary(my.mod)
- Para coeficiente de
x1
: glm(y~x2+x3, family="binomial")
vs.
glm(y~x1+x2+x3, family="binomial")
- Para coeficiente de
x2
: glm(y~x1+x3, family="binomial")
vs.glm(y~x1+x2+x3, family="binomial")
- Para coeficiente de
x3
: glm(y~x1+x2, family="binomial")
vs.glm(y~x1+x2+x3, family="binomial")
Portanto, cada coeficiente em relação ao modelo completo contém todos os coeficientes. Os testes de Wald são uma aproximação do teste da razão de verossimilhança. Também poderíamos fazer os testes de razão de verossimilhança (teste LR). Aqui está como:
mod1.2 <- glm(admit ~ gre + gpa, data = mydata, family = "binomial")
mod2.2 <- glm(admit ~ gre + rank, data = mydata, family = "binomial")
mod3.2 <- glm(admit ~ gpa + rank, data = mydata, family = "binomial")
anova(mod1.2, my.mod, test="LRT") # joint LR test for rank
Model 1: admit ~ gre + gpa
Model 2: admit ~ gre + gpa + rank
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 397 480.34
2 394 458.52 3 21.826 7.088e-05 ***
anova(mod2.2, my.mod, test="LRT") # LR test for gpa
Model 1: admit ~ gre + rank
Model 2: admit ~ gre + gpa + rank
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 395 464.53
2 394 458.52 1 6.0143 0.01419 *
anova(mod3.2, my.mod, test="LRT") # LR test for gre
Model 1: admit ~ gpa + rank
Model 2: admit ~ gre + gpa + rank
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 395 462.88
2 394 458.52 1 4.3578 0.03684 *
psummary(my.mod)
rank
anova(my.mod, test="Chisq")
rank
anova(mod1.2, my.mod, test="Chisq")
p7.088⋅10−5rank