Uma resposta mais séria para aprofundar esta questão e especialmente o interesse contínuo do @ silverfish. Uma abordagem para responder a perguntas como essa é executar algumas simulações para comparar. Abaixo está um código R que simula dados sob várias alternativas e faz vários testes de normalidade e compara a potência (e um intervalo de confiança na potência, uma vez que a energia é estimada por simulação). Ajustei um pouco o tamanho da amostra porque não era interessante quando muitos dos poderes estavam perto de 100% ou 5%, encontrei números redondos que forneciam poderes perto de 80%. Qualquer pessoa interessada pode facilmente pegar esse código e modificá-lo para diferentes suposições, alternativas diferentes etc.
Você pode ver que existem alternativas para as quais alguns dos testes se saem melhor e outros onde eles se saem pior. A questão importante é, então, quais alternativas são mais realistas para suas questões / áreas científicas. Isso realmente deve ser seguido com uma simulação do efeito dos tipos de não normalidade de interesse em outros testes que estão sendo realizados. Alguns desses tipos de não normalidade afetam muito outros testes com base normal, outros não os afetam muito.
> library(nortest)
>
> simfun1 <- function(fun=function(n) rnorm(n), n=250) {
+ x <- fun(n)
+ c(sw=shapiro.test(x)$p.value, sf=sf.test(x)$p.value, ad=ad.test(x)$p.value,
+ cvm=cvm.test(x)$p.value, lillie=lillie.test(x)$p.value,
+ pearson=pearson.test(x)$p.value, snow=0)
+ }
>
> ### Test size using null hypothesis near true
>
> out1 <- replicate(10000, simfun1())
> apply(out1, 1, function(x) mean(x<=0.05))
sw sf ad cvm lillie pearson snow
0.0490 0.0520 0.0521 0.0509 0.0531 0.0538 1.0000
> apply(out1, 1, function(x) prop.test(sum(x<=0.05),length(x))$conf.int) #$
sw sf ad cvm lillie pearson snow
[1,] 0.04489158 0.04776981 0.04786582 0.04671398 0.04882619 0.04949870 0.9995213
[2,] 0.05345887 0.05657820 0.05668211 0.05543493 0.05772093 0.05844785 1.0000000
>
> ### Test again with mean and sd different
>
> out2 <- replicate(10000, simfun1(fun=function(n) rnorm(n,100,5)))
> apply(out2, 1, function(x) mean(x<=0.05))
sw sf ad cvm lillie pearson snow
0.0482 0.0513 0.0461 0.0477 0.0515 0.0506 1.0000
> apply(out2, 1, function(x) prop.test(sum(x<=0.05),length(x))$conf.int) #$
sw sf ad cvm lillie pearson snow
[1,] 0.04412478 0.04709785 0.04211345 0.04364569 0.04728982 0.04642612 0.9995213
[2,] 0.05262633 0.05585073 0.05043938 0.05210583 0.05605860 0.05512303 1.0000000
>
> #### now for the power under different forms of non-normality
>
> ## heavy tails, t(3)
> rt3 <- function(n) rt(n, df=3)
>
> out3 <- replicate(10000, simfun1(fun=rt3, n=75))
There were 50 or more warnings (use warnings() to see the first 50)
> round(apply(out3, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.788 0.831 0.756 0.726 0.624 0.440 1.000
> round(apply(out3, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.780 0.824 0.748 0.717 0.614 0.431 1
[2,] 0.796 0.838 0.765 0.734 0.633 0.450 1
>
>
> ## light tails, uniform
> u <- function(n) runif(n)
>
> out4 <- replicate(10000, simfun1(fun=u, n=65))
> round(apply(out4, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.906 0.712 0.745 0.591 0.362 0.270 1.000
> round(apply(out4, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.900 0.703 0.737 0.581 0.353 0.261 1
[2,] 0.911 0.720 0.754 0.600 0.372 0.279 1
>
> ## double exponential, Laplace
> de <- function(n) sample(c(-1,1), n, replace=TRUE) * rexp(n)
>
> out5 <- replicate(10000, simfun1(fun=de, n=100))
> round(apply(out5, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.796 0.844 0.824 0.820 0.706 0.477 1.000
> round(apply(out5, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.788 0.837 0.817 0.813 0.697 0.467 1
[2,] 0.804 0.851 0.832 0.828 0.715 0.486 1
>
> ## skewed, gamma(2,2)
> g22 <- function(n) rgamma(n,2,2)
>
> out6 <- replicate(10000, simfun1(fun=g22, n=50))
Warning message:
In cvm.test(x) :
p-value is smaller than 7.37e-10, cannot be computed more accurately
> round(apply(out6, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.954 0.930 0.893 0.835 0.695 0.656 1.000
> round(apply(out6, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.950 0.925 0.886 0.827 0.686 0.646 1
[2,] 0.958 0.935 0.899 0.842 0.704 0.665 1
>
> ## skewed, gamma(2,2)
> g99 <- function(n) rgamma(n,9,9)
>
> out7 <- replicate(10000, simfun1(fun=g99, n=150))
> round(apply(out7, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.844 0.818 0.724 0.651 0.526 0.286 1.000
> round(apply(out7, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.836 0.810 0.715 0.642 0.516 0.277 1
[2,] 0.851 0.826 0.732 0.660 0.536 0.294 1
>
> ## tails normal, middle not
> mid <- function(n) {
+ x <- rnorm(n)
+ x[ x > -0.5 & x < 0.5 ] <- 0
+ x
+ }
>
> out9 <- replicate(10000, simfun1(fun=mid, n=30))
Warning messages:
1: In cvm.test(x) :
p-value is smaller than 7.37e-10, cannot be computed more accurately
2: In cvm.test(x) :
p-value is smaller than 7.37e-10, cannot be computed more accurately
> round(apply(out9, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.374 0.371 0.624 0.739 0.884 0.948 1.000
> round(apply(out9, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.365 0.362 0.614 0.730 0.878 0.943 1
[2,] 0.384 0.381 0.633 0.747 0.890 0.952 1
>
> ## mixture on variance
> mv <- function(n, p=0.1, sd=3) {
+ rnorm(n,0, ifelse(runif(n)<p, sd, 1))
+ }
>
> out10 <- replicate(10000, simfun1(fun=mv, n=100))
Warning message:
In cvm.test(x) :
p-value is smaller than 7.37e-10, cannot be computed more accurately
> round(apply(out10, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.800 0.844 0.682 0.609 0.487 0.287 1.000
> round(apply(out10, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.792 0.837 0.673 0.599 0.477 0.278 1
[2,] 0.808 0.851 0.691 0.619 0.497 0.296 1
>
> ## mixture on mean
> mm <- function(n, p=0.3, mu=2) {
+ rnorm(n, ifelse(runif(n)<p, mu, 0), 1)
+ }
>
> out11 <- replicate(10000, simfun1(fun=mm, n=400))
> round(apply(out11, 1, function(x) mean(x<=0.05, na.rm=TRUE)),3)
sw sf ad cvm lillie pearson snow
0.776 0.710 0.808 0.788 0.669 0.354 1.000
> round(apply(out11, 1, function(x){
+ prop.test(sum(x<=0.05,na.rm=TRUE),sum(!is.na(x)))$conf.int),3) } #$
sw sf ad cvm lillie pearson snow
[1,] 0.768 0.701 0.801 0.780 0.659 0.344 1
[2,] 0.784 0.719 0.816 0.796 0.678 0.363 1