Questão
A variação de uma distribuição binomial negativa (NB) é sempre maior que sua média. Quando a média de uma amostra é maior que sua variância, a tentativa de ajustar os parâmetros de um RN com probabilidade máxima ou com estimativa de momento falhará (não há solução com parâmetros finitos).
No entanto, é possível que uma amostra retirada de uma distribuição de RN tenha média maior que a variância. Aqui está um exemplo reproduzível em R.
set.seed(167)
x = rnbinom(100, size=3.2, prob=.8);
mean(x) # 0.82
var(x) # 0.8157576
Há uma probabilidade diferente de zero de que o RN produza uma amostra para a qual os parâmetros não podem ser estimados (pelos métodos de máxima verossimilhança e momento).
- Estimativas decentes podem ser fornecidas para esta amostra?
- O que a teoria das estimativas diz quando os estimadores não são definidos para todas as amostras?
Sobre a resposta
As respostas de @ MarkRobinson e @ Yves me fizeram perceber que a parametrização é a questão principal. A densidade de probabilidade do RN geralmente é escrita como
ou como P(X=k)=Γ(r+k)
Sob a primeira parametrização, a estimativa de máxima verossimilhança é sempre que a variância da amostra for menor que a média, portanto nada útil pode ser dito sobre p . Sob o segundo, é ( ∞ , ˉ x ) , para que possamos fornecer uma estimativa razoável de m . Por fim, @MarkRobinson mostra que podemos resolver o problema de valores infinitos usando r vez der.
Em conclusão, não há nada de fundamentalmente errado com este problema de estimação, exceto que você não pode sempre dar interpretações significativas de e p para cada amostra. Para ser justo, as idéias estão presentes nas duas respostas. Eu escolhi o de MarkRobinson como o correto para os complementos que ele faz.