1
Previsão de séries temporais usando LSTMs: importância de tornar estacionárias as séries temporais
Neste link sobre estacionariedade e diferenciação , foi mencionado que modelos como o ARIMA requerem uma série temporal estacionária para previsão, pois suas propriedades estatísticas como média, variação, autocorrelação etc. são constantes ao longo do tempo. Como as RNNs têm uma capacidade melhor de aprender relacionamentos não lineares ( conforme …