Teste de Johansen para cointegração


10

Estou testando a cointegração usando o teste de Johansen. Vi perguntas como interpretar os resultados dos testes, mas quando estou interpretando os meus, tenho algumas dúvidas. Nos meus resultados r = 3desde 4.10 < 10.49então, não posso formar uma série estacionária. É o mesmo para r = 2 e r = 1. Mas para r = 0, 86.12 > 59.14, para que haja uma combinação fixa.

Mas r = 0implica que não há vetores cointegrantes. Isso significa que meus dados não estão cointegrados e, portanto, não consigo criar um VECM?

Encontre meus resultados abaixo.

> cointegration <- ca.jo(Canada, type="trace",ecdet="trend",spec="transitory")
> summary(cointegration)

###################### 
# Johansen-Procedure # 
###################### 

Test type: trace statistic , with linear trend in cointegration 

Eigenvalues (lambda):
[1]  4.483918e-01  2.323995e-01  1.313250e-01  4.877895e-02 -1.859499e-17

Values of teststatistic and critical values of test:

          test 10pct  5pct  1pct
r <= 3 |  4.10 10.49 12.25 16.26
r <= 2 | 15.65 22.76 25.32 30.45
r <= 1 | 37.33 39.06 42.44 48.45
r = 0  | 86.12 59.14 62.99 70.05

Eigenvectors, normalised to first column:
(These are the cointegration relations)

               e.l1    prod.l1       rw.l1        U.l1    trend.l1
e.l1      1.0000000  1.0000000  1.00000000  1.00000000  1.00000000
prod.l1   0.3685667 -0.1582521  2.01545971  0.06122231 -0.09644538
rw.l1    -0.1369713 -0.5035147 -0.08233586 -0.15589592 -0.47523051
U.l1      3.2569951  2.4162383  2.98414327  1.57795960  1.54780259
trend.l1 -0.1539863  0.1477376 -0.53596432 -0.20898570  0.16907450

Weights W:
(This is the loading matrix)

              e.l1     prod.l1       rw.l1        U.l1      trend.l1
e.d     0.01520061  0.10989739  0.04306410 -0.01664954 -6.999563e-13
prod.d  0.06282619  0.17899905 -0.05415524 -0.10283813 -5.525444e-12
rw.d   -0.22958927  0.17308184 -0.03869293  0.06509098 -6.034107e-12
U.d    -0.05230297 -0.08731406 -0.01833898 -0.03719022  1.367902e-12

Respostas:


9

No teste de cointegração de Johansen, a hipótese alternativa para o teste de autovalor é a de que existem relações de cointegração .r+1

O teste é, portanto, seqüencial: você primeiro testa , depois , etc.r=0r=1

O teste conclui sobre o valor de quando o teste falha em rejeitar pela primeira vez. No seu caso, o teste falha ao rejeitar a hipótese nula pela primeira vez quando .rH0r=1

Portanto, você tem um relacionamento de cointegração.


Muito obrigado. É mais explícito para mim agora. Você tem sido de grande ajuda.
Ashleyshime

1
Em relação ao seu primeiro parágrafo, não é a alternativa e não a hipótese nula? O nulo r<=0, r<=1etc., conforme listado na primeira coluna da tabela, no meio da saída?
Richard Hardy

@ Richard Hardy: você está certo, eu mudei.
User89073 9/01
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.