Perguntas com a marcação «rnn»

Uma rede neural recorrente (RNN) é uma classe de rede neural artificial em que as conexões entre as unidades formam um ciclo direcionado.



3
Número de parâmetros em um modelo LSTM
Quantos parâmetros possui um único LSTM empilhado? O número de parâmetros impõe um limite inferior ao número de exemplos de treinamento necessários e também influencia o tempo de treinamento. Portanto, conhecer o número de parâmetros é útil para treinar modelos usando LSTMs.

1
Artigo: Qual é a diferença entre Normalização de Camada, Normalização de Lote Recorrente (2016) e RNN Normalizada de Lote (2015)?
Então, recentemente, há um artigo sobre Normalização de Camadas . Há também uma implementação no Keras. Mas lembro-me de que existem artigos intitulados Normalização de Lote Recorrente (Cooijmans, 2016) e Redes Neurais Recorrentes Normalizadas em Lote (Laurent, 2015). Qual é a diferença entre esses três? Existe esta seção de trabalho …


5
aumentar o mapa de calor marítimo
Crio um corr()df a partir de um df original. O corr()df saiu 70 X 70 e é impossível de visualizar o mapa de calor ... sns.heatmap(df). Se eu tentar exibir corr = df.corr(), a tabela não se encaixa na tela e posso ver todas as correlações. É uma maneira de …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 


1
RNN usando várias séries temporais
Estou tentando criar uma rede neural usando séries temporais como entrada, para treiná-la com base no tipo de cada série. Eu li que usando RNNs você pode dividir a entrada em lotes e usar todos os pontos da série temporal em neurônios individuais e, eventualmente, treinar a rede. O que …
14 time-series  rnn 

1
Esqueça a camada em uma rede neural recorrente (RNN) -
Estou tentando descobrir as dimensões de cada variável em uma RNN na camada de esquecimento, no entanto, não tenho certeza se estou no caminho certo. A próxima figura e equação é da postagem de Colah no blog "Entendendo as redes LSTM" : Onde: xtxtx_t é de entrada de tamanhom ∗ …



1
Quantas células LSTM devo usar?
Existem regras práticas (ou regras reais) referentes à quantidade mínima, máxima e "razoável" de células LSTM que devo usar? Especificamente, estou relacionado ao BasicLSTMCell da TensorFlow e à num_unitspropriedade. Suponha que eu tenha um problema de classificação definido por: t - number of time steps n - length of input …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

3
Existem bons modelos de linguagem prontos para uso em python?
Estou prototipando um aplicativo e preciso de um modelo de linguagem para calcular a perplexidade em algumas frases geradas. Existe algum modelo de linguagem treinado em python que eu possa usar facilmente? Algo simples como model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 

2
Abandono em quais camadas do LSTM?
Usando uma camada múltipla LSTMcom desistência, é recomendável colocar desistência em todas as camadas ocultas e nas camadas densas de saída? No artigo de Hinton (que propôs o Dropout), ele apenas colocou o Dropout nas camadas densas, mas isso ocorreu porque as camadas internas ocultas eram convolucionais. Obviamente, posso testar …

3
O que é LSTM, BiLSTM e quando usá-los?
Eu sou muito novo no aprendizado profundo e estou particularmente interessado em saber o que são LSTM e BiLSTM e quando usá-los (principais áreas de aplicação). Por que o LSTM e o BILSTM são mais populares que o RNN? Podemos usar essas arquiteturas de aprendizado profundo em problemas não supervisionados?

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.