Perguntas com a marcação «sentiment-analysis»

A análise de sentimento refere-se à categorização de alguns dados dados quanto a que sentimento (s) ela expressa. Normalmente, refere-se a extrair sentimento de um texto, por exemplo, tweets ou postagens de blog.

1

1
PNL - por que "não" é uma palavra de parada?
Estou tentando remover palavras de parada antes de executar a modelagem de tópicos. Notei que algumas palavras de negação (não, nem, nunca, nenhuma etc.) são geralmente consideradas palavras de parada. Por exemplo, NLTK, spacy e sklearn incluem "not" em suas listas de palavras de parada. No entanto, se removermos "não" …

5
aumentar o mapa de calor marítimo
Crio um corr()df a partir de um df original. O corr()df saiu 70 X 70 e é impossível de visualizar o mapa de calor ... sns.heatmap(df). Se eu tentar exibir corr = df.corr(), a tabela não se encaixa na tela e posso ver todas as correlações. É uma maneira de …
16 visualization  pandas  plotting  machine-learning  neural-network  svm  decision-trees  svm  efficiency  python  linear-regression  machine-learning  nlp  topic-model  lda  named-entity-recognition  naive-bayes-classifier  association-rules  fuzzy-logic  kaggle  deep-learning  tensorflow  inception  classification  feature-selection  feature-engineering  machine-learning  scikit-learn  tensorflow  keras  encoding  nlp  text-mining  nlp  rnn  python  neural-network  feature-extraction  machine-learning  predictive-modeling  python  r  linear-regression  clustering  r  ggplot2  neural-network  neural-network  training  python  neural-network  deep-learning  rnn  predictive-modeling  databases  sql  programming  distribution  dataset  cross-validation  neural-network  deep-learning  rnn  machine-learning  machine-learning  python  deep-learning  data-mining  tensorflow  visualization  tools  sql  embeddings  orange  feature-extraction  unsupervised-learning  gan  machine-learning  python  data-mining  pandas  machine-learning  data-mining  bigdata  apache-spark  apache-hadoop  deep-learning  python  convnet  keras  aggregation  clustering  k-means  r  random-forest  decision-trees  reference-request  visualization  data  pandas  plotting  neural-network  keras  rnn  theano  deep-learning  tensorflow  inception  predictive-modeling  deep-learning  regression  sentiment-analysis  nlp  encoding  deep-learning  python  scikit-learn  lda  convnet  keras  predictive-modeling  regression  overfitting  regression  svm  prediction  machine-learning  similarity  word2vec  information-retrieval  word-embeddings  neural-network  deep-learning  rnn 

1
Quantas células LSTM devo usar?
Existem regras práticas (ou regras reais) referentes à quantidade mínima, máxima e "razoável" de células LSTM que devo usar? Especificamente, estou relacionado ao BasicLSTMCell da TensorFlow e à num_unitspropriedade. Suponha que eu tenha um problema de classificação definido por: t - number of time steps n - length of input …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

3
Melhores idiomas para computação científica [fechado]
Fechado . Esta questão precisa ser mais focada . No momento, não está aceitando respostas. Deseja melhorar esta pergunta? Atualize a pergunta para que ela se concentre apenas em um problema editando esta postagem . Fechado há 5 anos . Parece que a maioria das línguas tem algum número de …
10 efficiency  statistics  tools  knowledge-base  machine-learning  neural-network  deep-learning  optimization  hyperparameter  machine-learning  time-series  categorical-data  logistic-regression  python  visualization  bigdata  efficiency  classification  binary  svm  random-forest  logistic-regression  data-mining  sql  experiments  bigdata  efficiency  performance  scalability  distributed  bigdata  nlp  statistics  education  knowledge-base  definitions  machine-learning  recommender-system  evaluation  efficiency  algorithms  parameter  efficiency  scalability  sql  statistics  visualization  knowledge-base  education  machine-learning  r  python  r  text-mining  sentiment-analysis  machine-learning  machine-learning  python  neural-network  statistics  reference-request  machine-learning  data-mining  python  classification  data-mining  bigdata  usecase  apache-hadoop  map-reduce  aws  education  feature-selection  machine-learning  machine-learning  sports  data-formats  hierarchical-data-format  bigdata  apache-hadoop  bigdata  apache-hadoop  python  visualization  knowledge-base  classification  confusion-matrix  accuracy  bigdata  apache-hadoop  bigdata  efficiency  apache-hadoop  distributed  machine-translation  nlp  metadata  data-cleaning  text-mining  python  pandas  machine-learning  python  pandas  scikit-learn  bigdata  machine-learning  databases  clustering  data-mining  recommender-system 

5
Como superar os diferentes comprimentos dos exemplos de treinamento ao trabalhar com Incorporações de Palavras (word2vec)
Estou trabalhando na análise de sentimentos sobre tweets usando o word2vec como representação de palavras. Eu treinei meu modelo word2vec. Mas quando vou treinar meu classificador, enfrento o problema de que cada tweet tem tamanho diferente e o classificador (RandomForest) precisa que todos os exemplos sejam do mesmo tamanho. Atualmente, …




1
Compreensão de bayes ingênuos: computando as probabilidades condicionais
Para uma tarefa de análise de sentimentos, suponha que tenhamos algumas classes representadas por características .ccciii Podemos representar a probabilidade condicional de cada classe como: que representa cada recurso e é a classe temos. , podemos representar Nossos antecedentes para cada classe são dados por: que:P(c|wi)=P(wi|c)⋅P(c)P(wi)P(c|wi)=P(wi|c)⋅P(c)P(wi)P(c | w_i) = \frac{P(w_i|c) …


3
Análise de sentimentos do Twitter: Detectando tweets neutros, apesar do treinamento apenas nas classes positivas e negativas
Eu sou um novato quando se trata de aprendizado de máquina. Estou tentando obter experiência prática analisando diferentes algoritmos de aprendizado supervisionado usando a biblioteca scikit-learn de python. Estou usando o conjunto de dados sentiment140 de 1,6 milhão de tweets para análise de sentimentos usando vários desses algoritmos. Não sei …

1
Usando o Apache Spark para fazer ML. Continue recebendo erros de serialização
então estou usando o Spark para fazer análises de sentimentos e continuo recebendo erros com os serializadores que ele usa (acho) para transmitir objetos python. PySpark worker failed with exception: Traceback (most recent call last): File "/Users/abdul/Desktop/RSI/spark-1.0.1-bin- hadoop1/python/pyspark/worker.py", line 77, in main serializer.dump_stream(func(split_index, iterator), outfile) File "/Users/abdul/Desktop/RSI/spark-1.0.1-bin- hadoop1/python/pyspark/serializers.py", line 191, …
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.