Perguntas com a marcação «bias»

A diferença entre o valor esperado de um estimador de parâmetro e o valor verdadeiro do parâmetro. NÃO use essa tag para se referir a [termo de viés] / [nó de viés] (ou seja, a [interceptação]).


10
O que significa "Os cientistas se levantam contra a significância estatística"? (Comentário na natureza)
O título do Comentário na Nature Scientists se defronta com a significância estatística começa com: Valentin Amrhein, Sander Greenland, Blake McShane e mais de 800 signatários pedem o fim de reivindicações sensatas e a rejeição de possíveis efeitos cruciais. e depois contém instruções como: Novamente, não estamos defendendo a proibição …





4
Quando a estimativa de viés de inicialização é válida?
Afirma-se frequentemente que o bootstrapping pode fornecer uma estimativa do viés em um estimador. Se é a estimativa de alguma estatística e são as réplicas de autoinicialização (com ), a estimativa de autoinicialização do viés é que parece extremamente simples e poderosa, a ponto de ser perturbadora. ~ t ii∈{1,⋯,N}biumst≈1t^t^\hat …
31 bootstrap  bias 

5
Como lidar com dados hierárquicos / aninhados no aprendizado de máquina
Vou explicar meu problema com um exemplo. Suponha que você queira prever a renda de um indivíduo, com alguns atributos: {Idade, Sexo, País, Região, Cidade}. Você tem um conjunto de dados de treinamento como esse train <- data.frame(CountryID=c(1,1,1,1, 2,2,2,2, 3,3,3,3), RegionID=c(1,1,1,2, 3,3,4,4, 5,5,5,5), CityID=c(1,1,2,3, 4,5,6,6, 7,7,7,8), Age=c(23,48,62,63, 25,41,45,19, 37,41,31,50), Gender=factor(c("M","F","M","F", …
29 regression  machine-learning  multilevel-analysis  correlation  dataset  spatial  paired-comparisons  cross-correlation  clustering  aic  bic  dependent-variable  k-means  mean  standard-error  measurement-error  errors-in-variables  regression  multiple-regression  pca  linear-model  dimensionality-reduction  machine-learning  neural-networks  deep-learning  conv-neural-network  computer-vision  clustering  spss  r  weighted-data  wilcoxon-signed-rank  bayesian  hierarchical-bayesian  bugs  stan  distributions  categorical-data  variance  ecology  r  survival  regression  r-squared  descriptive-statistics  cross-section  maximum-likelihood  factor-analysis  likert  r  multiple-imputation  propensity-scores  distributions  t-test  logit  probit  z-test  confidence-interval  poisson-distribution  deep-learning  conv-neural-network  residual-networks  r  survey  wilcoxon-mann-whitney  ranking  kruskal-wallis  bias  loss-functions  frequentist  decision-theory  risk  machine-learning  distributions  normal-distribution  multivariate-analysis  inference  dataset  factor-analysis  survey  multilevel-analysis  clinical-trials 

1
Os graus de liberdade podem ser um número não inteiro?
Quando uso o GAM, o DF residual é (última linha do código). O que isso significa? Indo além do exemplo do GAM, em geral, o número de graus de liberdade pode ser um número não inteiro?26,626.626.6 > library(gam) > summary(gam(mpg~lo(wt),data=mtcars)) Call: gam(formula = mpg ~ lo(wt), data = mtcars) Deviance …
27 r  degrees-of-freedom  gam  machine-learning  pca  lasso  probability  self-study  bootstrap  expected-value  regression  machine-learning  linear-model  probability  simulation  random-generation  machine-learning  distributions  svm  libsvm  classification  pca  multivariate-analysis  feature-selection  archaeology  r  regression  dataset  simulation  r  regression  time-series  forecasting  predictive-models  r  mean  sem  lavaan  machine-learning  regularization  regression  conv-neural-network  convolution  classification  deep-learning  conv-neural-network  regression  categorical-data  econometrics  r  confirmatory-factor  scale-invariance  self-study  unbiased-estimator  mse  regression  residuals  sampling  random-variable  sample  probability  random-variable  convergence  r  survival  weibull  references  autocorrelation  hypothesis-testing  distributions  correlation  regression  statistical-significance  regression-coefficients  univariate  categorical-data  chi-squared  regression  machine-learning  multiple-regression  categorical-data  linear-model  pca  factor-analysis  factor-rotation  classification  scikit-learn  logistic  p-value  regression  panel-data  multilevel-analysis  variance  bootstrap  bias  probability  r  distributions  interquartile  time-series  hypothesis-testing  normal-distribution  normality-assumption  kurtosis  arima  panel-data  stata  clustered-standard-errors  machine-learning  optimization  lasso  multivariate-analysis  ancova  machine-learning  cross-validation 

2
Estimador de polarização do momento da distribuição lognormal
Estou fazendo um experimento numérico que consiste em amostrar uma distribuição lognormal X∼LN(μ,σ)X∼LN(μ,σ)X\sim\mathcal{LN}(\mu, \sigma) e tentar estimar os momentos E[Xn]E[Xn]\mathbb{E}[X^n] por dois métodos: Olhando para a média amostral do XnXnX^n Estimando μμ\mu e σ2σ2\sigma^2 usando as médias da amostra para log(X),log2(X)log⁡(X),log2⁡(X)\log(X), \log^2(X) e depois usando o fato de que, para …






Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.