Derivando a densidade posterior para uma probabilidade lognormal e prévia de Jeffreys
A função de probabilidade de uma distribuição lognormal é: f(x;μ,σ)∝∏ni11σxiexp(−(lnxi−μ)22σ2)f(x;μ,σ)∝∏i1n1σxiexp(−(lnxi−μ)22σ2)f(x; \mu, \sigma) \propto \prod_{i_1}^n \frac{1}{\sigma x_i} \exp \left ( - \frac{(\ln{x_i} - \mu)^2}{2 \sigma^2} \right ) e o Prior de Jeffreys é: p(μ,σ)∝1σ2p(μ,σ)∝1σ2p(\mu,\sigma) \propto \frac{1}{\sigma^2} então, combinar os dois dá: f(μ,σ2|x)=∏ni11σxiexp(−(lnxi−μ)22σ2)⋅σ−2f(μ,σ2|x)=∏i1n1σxiexp(−(lnxi−μ)22σ2)⋅σ−2f(\mu,\sigma^2|x)= \prod_{i_1}^n \frac{1}{\sigma x_i} \exp \left ( - \frac{(\ln{x_i} - …