Perguntas com a marcação «dataset»

Um conjunto de dados é uma coleção de dados, geralmente em forma de tabela ou matriz. Essa tag NÃO se destina a solicitações de dados ("onde posso encontrar um conjunto de dados sobre ...") -> consulte OpenData


6
Conjuntos de dados que compreendem as melhores práticas
Eu sou um estudante de mestrado em mineração de dados. Meu supervisor me disse uma vez que, antes de executar qualquer classificador ou fazer qualquer coisa com um conjunto de dados, preciso entender completamente os dados e garantir que eles estejam limpos e corretos. Minhas perguntas: Quais são as melhores …

4
Uma alternativa de codificação quente para grandes valores categóricos?
Oi tenho dataframe com grandes valores categóricos acima de 1600 categorias existe alguma maneira de encontrar alternativas para que eu não tenha mais de 1600 colunas. Encontrei este link interessante abaixo http://amunategui.github.io/feature-hashing/#sourcecode Mas eles estão convertendo para classe / objeto que eu não quero. Quero minha saída final como um …


2
Tarifas de companhias aéreas - Que análise deve ser usada para detectar comportamento competitivo de estabelecimento de preços e correlações de preços?
Quero investigar o comportamento de estabelecimento de preços das companhias aéreas - especificamente como as empresas reagem aos preços dos concorrentes. Como eu diria, meu conhecimento sobre análises mais complexas é bastante limitado. Eu fiz principalmente todos os métodos básicos para reunir uma visão geral dos dados. Isso inclui gráficos …


1
Quantas células LSTM devo usar?
Existem regras práticas (ou regras reais) referentes à quantidade mínima, máxima e "razoável" de células LSTM que devo usar? Especificamente, estou relacionado ao BasicLSTMCell da TensorFlow e à num_unitspropriedade. Suponha que eu tenha um problema de classificação definido por: t - number of time steps n - length of input …
12 rnn  machine-learning  r  predictive-modeling  random-forest  python  language-model  sentiment-analysis  encoding  machine-learning  deep-learning  neural-network  dataset  caffe  classification  xgboost  multiclass-classification  unbalanced-classes  time-series  descriptive-statistics  python  r  clustering  machine-learning  python  deep-learning  tensorflow  machine-learning  python  predictive-modeling  probability  scikit-learn  svm  machine-learning  python  classification  gradient-descent  regression  research  python  neural-network  deep-learning  convnet  keras  python  tensorflow  machine-learning  deep-learning  tensorflow  python  r  bigdata  visualization  rstudio  pandas  pyspark  dataset  time-series  multilabel-classification  machine-learning  neural-network  ensemble-modeling  kaggle  machine-learning  linear-regression  cnn  convnet  machine-learning  tensorflow  association-rules  machine-learning  predictive-modeling  training  model-selection  neural-network  keras  deep-learning  deep-learning  convnet  image-classification  predictive-modeling  prediction  machine-learning  python  classification  predictive-modeling  scikit-learn  machine-learning  python  random-forest  sampling  training  recommender-system  books  python  neural-network  nlp  deep-learning  tensorflow  python  matlab  information-retrieval  search  search-engine  deep-learning  convnet  keras  machine-learning  python  cross-validation  sampling  machine-learning 

3
Existem bons modelos de linguagem prontos para uso em python?
Estou prototipando um aplicativo e preciso de um modelo de linguagem para calcular a perplexidade em algumas frases geradas. Existe algum modelo de linguagem treinado em python que eu possa usar facilmente? Algo simples como model = LanguageModel('en') p1 = model.perplexity('This is a well constructed sentence') p2 = model.perplexity('Bunny lamp …
11 python  nlp  language-model  r  statistics  linear-regression  machine-learning  classification  random-forest  xgboost  python  sampling  data-mining  orange  predictive-modeling  recommender-system  statistics  dimensionality-reduction  pca  machine-learning  python  deep-learning  keras  reinforcement-learning  neural-network  image-classification  r  dplyr  deep-learning  keras  tensorflow  lstm  dropout  machine-learning  sampling  categorical-data  data-imputation  machine-learning  deep-learning  machine-learning-model  dropout  deep-network  pandas  data-cleaning  data-science-model  aggregation  python  neural-network  reinforcement-learning  policy-gradients  r  dataframe  dataset  statistics  prediction  forecasting  r  k-means  python  scikit-learn  labels  python  orange  cloud-computing  machine-learning  neural-network  deep-learning  rnn  recurrent-neural-net  logistic-regression  missing-data  deep-learning  autoencoder  apache-hadoop  time-series  data  preprocessing  classification  predictive-modeling  time-series  machine-learning  python  feature-selection  autoencoder  deep-learning  keras  tensorflow  lstm  word-embeddings  predictive-modeling  prediction  machine-learning-model  machine-learning  classification  binary  theory  machine-learning  neural-network  time-series  lstm  rnn  neural-network  deep-learning  keras  tensorflow  convnet  computer-vision 




3
Conjuntos de dados clássicos de análise de rede
Existem vários conjuntos de dados clássicos para tarefas de classificação / regressão de aprendizado de máquina. Os mais populares são: Conjunto de dados de flor de íris ; Conjunto de dados do Titanic ; Carros da tendência do motor ; etc. Mas alguém conhece conjuntos de dados semelhantes para análise …
10 dataset  graphs 

3
Relação entre convolução em matemática e CNN
Li a explicação da convolução e a compreendi até certo ponto. Alguém pode me ajudar a entender como essa operação se relaciona à convolução nas redes neurais convolucionais? O filtro é uma função gque aplica peso?
10 machine-learning  neural-network  deep-learning  cnn  convolution  machine-learning  ensemble-modeling  machine-learning  classification  data-mining  clustering  machine-learning  feature-selection  convnet  pandas  graphs  ipython  machine-learning  apache-spark  multiclass-classification  naive-bayes-classifier  multilabel-classification  machine-learning  data-mining  dataset  data-cleaning  data  machine-learning  data-mining  statistics  correlation  machine-learning  data-mining  dataset  data-cleaning  data  beginner  career  python  r  visualization  machine-learning  data-mining  nlp  stanford-nlp  dataset  linear-regression  time-series  correlation  anomaly-detection  ensemble-modeling  data-mining  machine-learning  python  data-mining  recommender-system  machine-learning  cross-validation  model-selection  scoring  prediction  sequential-pattern-mining  categorical-data  python  tensorflow  image-recognition  statistics  machine-learning  data-mining  predictive-modeling  data-cleaning  preprocessing  classification  deep-learning  tensorflow  machine-learning  algorithms  data  keras  categorical-data  reference-request  loss-function  classification  logistic-regression  apache-spark  prediction  naive-bayes-classifier  beginner  nlp  word2vec  vector-space-models  scikit-learn  decision-trees  data  programming 

3

2
Quando escolher a regressão linear ou a Árvore de Decisão ou a Floresta Aleatória? [fechadas]
Fechado . Esta questão precisa ser mais focada . No momento, não está aceitando respostas. Deseja melhorar esta pergunta? Atualize a pergunta para que ela se concentre apenas em um problema editando esta postagem . Fechado há 4 anos . Estou trabalhando em um projeto e estou tendo dificuldades para …
10 machine-learning  algorithms  random-forest  linear-regression  decision-trees  machine-learning  predictive-modeling  forecast  r  clustering  similarity  data-mining  dataset  statistics  text-mining  text-mining  data-cleaning  data-wrangling  machine-learning  classification  algorithms  xgboost  data-mining  dataset  dataset  regression  graphs  svm  unbalanced-classes  cross-validation  optimization  hyperparameter  genetic-algorithms  visualization  predictive-modeling  correlation  machine-learning  predictive-modeling  apache-spark  statistics  normalization  apache-spark  map-reduce  r  correlation  confusion-matrix  r  data-cleaning  classification  terminology  dataset  image-classification  machine-learning  regression  apache-spark  machine-learning  data-mining  nlp  parsing  machine-learning  dimensionality-reduction  visualization  clustering  multiclass-classification  evaluation  unsupervised-learning  machine-learning  machine-learning  data-mining  supervised-learning  unsupervised-learning  machine-learning  data-mining  classification  statistics  predictive-modeling  data-mining  clustering  python  pandas  machine-learning  dataset  data-cleaning  data  bigdata  software-recommendation 

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.