Perguntas com a marcação «time-series»

Séries temporais são dados observados ao longo do tempo (em tempo contínuo ou em períodos discretos).

2
Quais modelos econométricos podem ser usados ​​para prever retornos de segurança + perguntas sobre ARIMA / GARCH
Estou tentando escrever uma tese de graduação em que testo o poder preditivo de um determinado modelo econométrico em uma determinada série temporal financeira. Preciso de alguns conselhos sobre como devo fazer isso. Para colocar as questões em contexto, tenho principalmente econometria auto-estudada; o único caminho que tomei sobre o …

1
Problemas com a previsão de séries temporais
Eu tenho uma pergunta sobre modelagem de séries temporais em R. meus dados consistem na seguinte matriz: 1 0.03333333 0.01111111 0.9555556 2 0.03810624 0.02309469 0.9387991 3 0.00000000 0.03846154 0.9615385 4 0.03776683 0.03119869 0.9310345 5 0.06606607 0.01201201 0.9219219 6 0.03900325 0.02058505 0.9404117 7 0.03125000 0.01562500 0.9531250 8 0.00000000 0.00000000 1.0000000 9 …



3
Encontre distribuição e transforme em distribuição normal
Eu tenho dados que descrevem com que frequência um evento ocorre durante uma hora ("número por hora", nph) e quanto tempo os eventos duram ("duração em segundos por hora", dph). Estes são os dados originais: nph <- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, 1.05882352939726, …
8 normal-distribution  data-transformation  logistic  generalized-linear-model  ridge-regression  t-test  wilcoxon-signed-rank  paired-data  naive-bayes  distributions  logistic  goodness-of-fit  time-series  eviews  ecm  panel-data  reliability  psychometrics  validity  cronbachs-alpha  self-study  random-variable  expected-value  median  regression  self-study  multiple-regression  linear-model  forecasting  prediction-interval  normal-distribution  excel  bayesian  multivariate-analysis  modeling  predictive-models  canonical-correlation  rbm  time-series  machine-learning  neural-networks  fishers-exact  factorisation-theorem  svm  prediction  linear  reinforcement-learning  cdf  probability-inequalities  ecdf  time-series  kalman-filter  state-space-models  dynamic-regression  index-decomposition  sampling  stratification  cluster-sample  survey-sampling  distributions  maximum-likelihood  gamma-distribution 

1
Ajustar um modelo VAR com R [fechado]
Fechadas. Esta questão está fora de tópico . No momento, não está aceitando respostas. Deseja melhorar esta pergunta? Atualize a pergunta para que ela esteja no tópico de Validação cruzada. Fechado há 2 anos . Tenho uma série temporal bivariada em z_tque z_1té a mudança nas letras do tesouro dos …
8 r  time-series  var 


1
Modelos de estado oculto vs. modelos sem estado para regressão de séries temporais
Essa é uma pergunta bastante genérica: suponha que eu queira construir um modelo para prever a próxima observação com base nas observações anteriores de ( N pode ser um parâmetro para otimizar experimentalmente). Portanto, basicamente temos uma janela deslizante de recursos de entrada para prever a próxima observação.NNNNNN Eu posso …





1
Determinando as melhores séries temporais correlacionadas
Antes de perguntar, li perguntas semelhantes, mas nenhuma delas levou a respostas satisfatórias para meu interesse específico. Quero homogeneizar uma série climática climática da República Dominicana ao longo de 64 anos (1940-2003). Para isso, é realmente importante selecionar uma série de referência entre um grupo de candidatos. Digamos que sjoseja …


3
Erros em otimização ao ajustar o modelo de arima em R
Estou usando o método arima do pacote de estatísticas R com minha série temporal de 17376 elementos. Meu objetivo é obter o valor do critério AIC, observei no meu primeiro teste isso: ts <- arima(serie[,1], order = c(2,1,1), seasonal = list(order=c(2,0,1),period = 24), method = "CSS", optim.method = "BFGS",) > …

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.