2
Estimando a distribuição posterior da covariância de um gaussiano multivariado
Eu preciso "aprender" a distribuição de um gaussiano bivariado com poucas amostras, mas uma boa hipótese sobre a distribuição anterior, então eu gostaria de usar a abordagem bayesiana. Eu defini o meu anterior: P(μ)∼N(μ0,Σ0)P(μ)∼N(μ0,Σ0) \mathbf{P}(\mathbf{\mu}) \sim \mathcal{N}(\mathbf{\mu_0},\mathbf{\Sigma_0}) μ0=[00] Σ0=[160027]μ0=[00] Σ0=[160027] \mathbf{\mu_0} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \ \ \ …