Perguntas com a marcação «feature-selection»

Métodos e princípios de seleção de um subconjunto de atributos para uso em modelagem adicional

2
Seleção de características em um modelo linear generalizado hierárquico bayesiano
Pretendo estimar um GLM hierárquico, mas com a seleção de recursos para determinar quais covariáveis ​​são relevantes no nível da população a serem incluídas. Suponha que eu tenha grupos com observações e possíveis covariáveis ​​Ou seja, possuo uma matriz de design de covariáveis \ boldsymbol {x} _ {(N \ cdot …




2
Por que um modelo estatístico superajustaria se recebesse um grande conjunto de dados?
Meu projeto atual pode exigir que eu construa um modelo para prever o comportamento de um determinado grupo de pessoas. o conjunto de dados de treinamento contém apenas 6 variáveis ​​(id é apenas para fins de identificação): id, age, income, gender, job category, monthly spend em que monthly spendé a …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 



1
Intervalos de confiança ao usar o teorema de Bayes
Estou computando algumas probabilidades condicionais e intervalos de confiança associados a 95%. Para muitos de meus casos, tenho contagens diretas de xsucessos fora dos ntestes (de uma tabela de contingência), para que eu possa usar um intervalo de confiança binomial, como é fornecido por binom.confint(x, n, method='exact')in R. Em outros …

1
Regressão linear esparsa 0-norma e 1-norma
Temos uma resposta e preditoresY∈RnY∈RnY \in \Bbb R^nX=(x1,x2,⋯,xm)T∈Rn×mX=(x1,x2,⋯,xm)T∈Rn×mX = (x_1, x_2, \cdots, x_m)^T \in \Bbb R^{n \times m} O problema que queremos resolver é argmink∈Rm(∥Y−Xk∥22+λ∥k∥0)→k0argmink∈Rm(‖Y−Xk‖22+λ‖k‖0)→k0\text{argmin}_{k \in \Bbb R^{m}} (\Vert Y - Xk \Vert_2^2 + \lambda \Vert k \Vert_0) \rightarrow k_0 No entanto, é difícil para NP; portanto, resolvemos argmink∈Rm(∥Y−Xk∥22+λ∥k∥1)→k1argmink∈Rm(‖Y−Xk‖22+λ‖k‖1)→k1\text{argmin}_{k \in …


1
No PCA, existe uma maneira sistemática de descartar variáveis ​​para maximizar a segregação de duas populações?
Estou tentando investigar, usando a análise de componentes principais, se é possível adivinhar com boa confiança de qual população ("Aurignaciana" ou "Gravetiana") veio um novo ponto de dados. Um ponto de dados é descrito por 28 variáveis, a maioria das quais são frequências relativas de artefatos arqueológicos. As demais variáveis …
Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.