2
Bootstrapping paramétrico, semiparamétrico e não paramétrico para modelos mistos
Os seguintes enxertos são retirados deste artigo . Eu sou novato no bootstrap e estou tentando implementar o bootstrap paramétrico, semiparamétrico e não paramétrico para o modelo misto linear com o R bootpacote. Código R Aqui está o meu Rcódigo: library(SASmixed) library(lme4) library(boot) fm1Cult <- lmer(drywt ~ Inoc + Cult …
9
r
mixed-model
bootstrap
central-limit-theorem
stable-distribution
time-series
hypothesis-testing
markov-process
r
correlation
categorical-data
association-measure
meta-analysis
r
anova
confidence-interval
lm
r
bayesian
multilevel-analysis
logit
regression
logistic
least-squares
eda
regression
notation
distributions
random-variable
expected-value
distributions
markov-process
hidden-markov-model
r
variance
group-differences
microarray
r
descriptive-statistics
machine-learning
references
r
regression
r
categorical-data
random-forest
data-transformation
data-visualization
interactive-visualization
binomial
beta-distribution
time-series
forecasting
logistic
arima
beta-regression
r
time-series
seasonality
large-data
unevenly-spaced-time-series
correlation
statistical-significance
normalization
population
group-differences
demography