Perguntas com a marcação «model-selection»

A seleção de modelos é um problema de julgar qual modelo de algum conjunto apresenta o melhor desempenho. Os métodos populares incluemR2, Critérios AIC e BIC, conjuntos de testes e validação cruzada. Até certo ponto, a seleção de recursos é um subproblema da seleção de modelos.



2
Em qual configuração você esperaria que o modelo encontrado pelo LARS diferisse mais do modelo encontrado por pesquisa exaustiva?
Um pouco mais de informação; Suponha que você sabe de antemão quantas variáveis ​​selecionar e que define a penalidade de complexidade no procedimento LARS para ter exatamente tantas variáveis ​​com coeficientes diferentes de 0, custos de computação não são um problema (o número total de variáveis ​​é pequeno, digamos 50), …

2
Calcular curva ROC para dados
Portanto, tenho 16 ensaios em que estou tentando autenticar uma pessoa de uma característica biométrica usando a Distância de Hamming. Meu limite está definido como 3,5. Meus dados estão abaixo e apenas o teste 1 é um verdadeiro positivo: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 

3
Computando o melhor subconjunto de preditores para regressão linear
Para a seleção de preditores na regressão linear multivariada com preditores adequados, quais métodos estão disponíveis para encontrar um subconjunto 'ótimo' dos preditores sem testar explicitamente todos os subconjuntos 2 p ? Em 'Applied Survival Analysis', Hosmer & Lemeshow fazem referência ao método de Kuk, mas não consigo encontrar o …





4
Escolhendo um modelo de regressão
Como alguém pode objetivamente (ler "algoritmicamente") selecionar um modelo apropriado para fazer uma regressão linear de mínimos quadrados simples com duas variáveis? Por exemplo, digamos que os dados pareçam mostrar uma tendência quadrática e é gerada uma parábola que se ajusta muito bem aos dados. Como justificamos fazer dessa regressão? …

2
Por que um modelo estatístico superajustaria se recebesse um grande conjunto de dados?
Meu projeto atual pode exigir que eu construa um modelo para prever o comportamento de um determinado grupo de pessoas. o conjunto de dados de treinamento contém apenas 6 variáveis ​​(id é apenas para fins de identificação): id, age, income, gender, job category, monthly spend em que monthly spendé a …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 


2
Lidando com bom desempenho em dados de treinamento e validação, mas muito ruim em dados de teste
Eu tenho um problema de regressão com 5-6k variáveis. Divido meus dados em três conjuntos não sobrepostos: treinamento, validação e teste. Treino usando apenas o conjunto de treinamento e gere muitos modelos diferentes de regressão linear escolhendo um conjunto diferente de 200 variáveis ​​para cada modelo (eu tento cerca de …



Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.