Perguntas com a marcação «independence»

Eventos (ou variáveis ​​aleatórias) são independentes quando as informações de alguns deles não dizem nada sobre a probabilidade de ocorrência (/ distribuição) dos outros. Por favor, NÃO use essa tag para uso variável independente [preditor].


3
Um exemplo: regressão do LASSO usando glmnet para resultado binário
Estou começando a se envolver com o uso de glmnetcom LASSO Regressão onde meu desfecho de interesse é dicotômica. Criei um pequeno quadro de dados simulado abaixo: age <- c(4, 8, 7, 12, 6, 9, 10, 14, 7) gender <- c(1, 0, 1, 1, 1, 0, 1, 0, 0) bmi_p …
78 r  self-study  lasso  regression  interpretation  anova  statistical-significance  survey  conditional-probability  independence  naive-bayes  graphical-model  r  time-series  forecasting  arima  r  forecasting  exponential-smoothing  bootstrap  outliers  r  regression  poisson-distribution  zero-inflation  genetic-algorithms  machine-learning  feature-selection  cart  categorical-data  interpretation  descriptive-statistics  variance  multivariate-analysis  covariance-matrix  r  data-visualization  generalized-linear-model  binomial  proportion  pca  matlab  svd  time-series  correlation  spss  arima  chi-squared  curve-fitting  text-mining  zipf  probability  categorical-data  distance  group-differences  bhattacharyya  regression  variance  mean  data-visualization  variance  clustering  r  standard-error  association-measure  somers-d  normal-distribution  integral  numerical-integration  bayesian  clustering  python  pymc  nonparametric-bayes  machine-learning  svm  kernel-trick  hyperparameter  poisson-distribution  mean  continuous-data  univariate  missing-data  dag  python  likelihood  dirichlet-distribution  r  anova  hypothesis-testing  statistical-significance  p-value  rating  data-imputation  censoring  threshold 

8
Gere uma variável aleatória com uma correlação definida para uma (s) variável (s) existente (s)
Para um estudo de simulação, eu tenho que gerar variáveis ​​aleatórias que mostram uma correlação pré-definida (população) com uma variável existente YYY. Examinei os Rpacotes copulae CDVineque podem produzir distribuições multivariadas aleatórias com uma determinada estrutura de dependência. No entanto, não é possível corrigir uma das variáveis ​​resultantes em uma …


4
Covariância e independência?
Li no meu livro que não garante que X e Y sejam independentes. Mas se são independentes, sua covariância deve ser 0. Ainda não consegui pensar em nenhum exemplo adequado; alguém poderia fornecer um?cov ( X, Y) = 0cov(X,Y)=0\text{cov}(X,Y)=0





3
Independência estatística significa falta de causalidade?
Duas variáveis ​​aleatórias A e B são estatisticamente independentes. Isso significa que no DAG do processo: e, é claro, . Mas isso também significa que não há porta da frente de B para A?(A⊥⊥B)(A⊥⊥B)(A {\perp\!\!\!\perp} B)P(A|B)=P(A)P(A|B)=P(A)P(A|B)=P(A) Porque então devemos obter . Então, se for esse o caso, independência estatística significa …

3
Se X e Y não estão correlacionados, X ^ 2 e Y também não estão correlacionados?
Se duas variáveis ​​aleatórias e não estão correlacionadas, também podemos saber que e não correlacionam? Minha hipótese é sim.XXXYYYX2X2X^2YYY X,YX,YX, Y não correlacionado significa , ouE[XY]=E[X]E[Y]E[XY]=E[X]E[Y]E[XY]=E[X]E[Y] E[XY]=∫xyfX(x)fY(y)dxdy=∫xfX(x)dx∫yfY(y)dy=E[X]E[Y]E[XY]=∫xyfX(x)fY(y)dxdy=∫xfX(x)dx∫yfY(y)dy=E[X]E[Y] E[XY]=\int xy f_X(x)f_Y(y)dxdy=\int xf_X(x)dx\int yf_Y(y)dy=E[X]E[Y] Isso também significa o seguinte? E[X2Y]=∫x2yfX(x)fY(y)dxdy=∫x2fX(x)dx∫yfY(y)dy=E[X2]E[Y]E[X2Y]=∫x2yfX(x)fY(y)dxdy=∫x2fX(x)dx∫yfY(y)dy=E[X2]E[Y] E[X^2Y]=\int x^2y f_X(x)f_Y(y)dxdy=\int x^2f_X(x)dx\int yf_Y(y)dy=E[X^2]E[Y]





Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.