3
Qual é a intuição por trás das distribuições gaussianas condicionais?
Suponha que . Em seguida, a distribuição condicional de considerando que é multivariada, normalmente distribuída com média:X 1 X 2 = x 2X ∼ N2( μ , Σ )X∼N2(μ,Σ)\mathbf{X} \sim N_{2}(\mathbf{\mu}, \mathbf{\Sigma})X1X1X_1X2= x2X2=x2X_2 = x_2 E[P(X1|X2=x2)]=μ1+σ12σ22(x2−μ2)E[P(X1|X2=x2)]=μ1+σ12σ22(x2−μ2) E[P(X_1 | X_2 = x_2)] = \mu_1+\frac{\sigma_{12}}{\sigma_{22}}(x_2-\mu_2) e variância: Var[P(X1|X2=x2)]=σ11−σ212σ22Var[P(X1|X2=x2)]=σ11−σ122σ22{\rm Var}[P(X_1 | X_2 = …