Perguntas com a marcação «machine-learning»

Os algoritmos de aprendizado de máquina constroem um modelo dos dados de treinamento. O termo "aprendizado de máquina" é vagamente definido; inclui o que também é chamado aprendizado estatístico, aprendizado reforçado, aprendizado não supervisionado etc. SEMPRE ADICIONE UM TAG MAIS ESPECÍFICO.

1
Como a descida estocástica do gradiente poderia economizar tempo em comparação com a descida padrão do gradiente?
A Descida de gradiente padrão calcularia o gradiente para todo o conjunto de dados de treinamento. for i in range(nb_epochs): params_grad = evaluate_gradient(loss_function, data, params) params = params - learning_rate * params_grad Para um número predefinido de épocas, primeiro calculamos o vetor de gradiente weights_grad da função de perda para …

4
A precisão da máquina de aumento de gradiente diminui à medida que o número de iterações aumenta
Estou experimentando o algoritmo da máquina de aumento de gradiente através do caretpacote em R. Usando um pequeno conjunto de dados de admissões de faculdade, executei o seguinte código: library(caret) ### Load admissions dataset. ### mydata <- read.csv("http://www.ats.ucla.edu/stat/data/binary.csv") ### Create yes/no levels for admission. ### mydata$admit_factor[mydata$admit==0] <- "no" mydata$admit_factor[mydata$admit==1] <- …
15 machine-learning  caret  boosting  gbm  hypothesis-testing  t-test  panel-data  psychometrics  intraclass-correlation  generalized-linear-model  categorical-data  binomial  model  intercept  causality  cross-correlation  distributions  ranks  p-value  z-test  sign-test  time-series  references  terminology  cross-correlation  definition  probability  distributions  beta-distribution  inverse-gamma  missing-data  paired-comparisons  paired-data  clustered-standard-errors  cluster-sample  time-series  arima  logistic  binary-data  odds-ratio  medicine  hypothesis-testing  wilcoxon-mann-whitney  unsupervised-learning  hierarchical-clustering  neural-networks  train  clustering  k-means  regression  ordinal-data  change-scores  machine-learning  experiment-design  roc  precision-recall  auc  stata  multilevel-analysis  regression  fitting  nonlinear  jmp  r  data-visualization  gam  gamm4  r  lme4-nlme  many-categories  regression  causality  instrumental-variables  endogeneity  controlling-for-a-variable 

1
Quais são algumas boas perguntas da entrevista para candidatos a desenvolvedores de algoritmos estatísticos?
Estou entrevistando pessoas para uma posição de desenvolvedor / pesquisador de algoritmos em um contexto de estatística / aprendizado de máquina / mineração de dados. Estou procurando perguntas para determinar, especificamente, a familiaridade, compreensão e fluidez de um candidato com a teoria subjacente, por exemplo, propriedades básicas de expectativa e …


3
Na suavização Kneser-Ney, como são tratadas as palavras invisíveis?
Pelo que vi, a fórmula de suavização Kneser-Ney (de segunda ordem) é, de uma maneira ou de outra, dada como P2KN(wn|wn−1)=max{C(wn−1,wn)−D,0}∑w′C(wn−1,w′)+λ(wn−1)×Pcont(wn)PKN2(wn|wn−1)=max{C(wn−1,wn)−D,0}∑w′C(wn−1,w′)+λ(wn−1)×Pcont(wn) \begin{align} P^2_{KN}(w_n|w_{n-1}) &= \frac{\max \left\{ C\left(w_{n-1}, w_n\right) - D, 0\right\}}{\sum_{w'} C\left(w_{n-1}, w'\right)} + \lambda(w_{n-1}) \times P_{cont}(w_n) \end{align} com o fator de normalização fornecido comoλ(wn−1)λ(wn−1)\lambda(w_{n-1}) λ(wn−1)=D∑w′C(wn−1,w′)×N1+(wn−1∙)λ(wn−1)=D∑w′C(wn−1,w′)×N1+(wn−1∙) \begin{align} \lambda(w_{n-1}) &= \frac{D}{\sum_{w'} …



1
Qual é a intuição por trás de amostras intercambiáveis ​​sob a hipótese nula?
Os testes de permutação (também chamados de teste de randomização, teste de re-randomização ou teste exato) são muito úteis e úteis quando a suposição de distribuição normal exigida por, por exemplo, t-testnão é atendida e quando a transformação dos valores pela classificação do teste não-paramétrico como Mann-Whitney-U-testlevaria a mais informações …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

1
Significado dos termos de saída no pacote gbm?
Estou usando o pacote gbm para classificação. Como esperado, os resultados são bons. Mas estou tentando entender a saída do classificador. Existem cinco termos na saída. `Iter TrainDeviance ValidDeviance StepSize Improve` Alguém poderia explicar o significado de cada termo, especialmente o significado de Melhorar .







Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.