Perguntas com a marcação «algorithms»

Uma lista inequívoca de etapas computacionais envolvidas na localização de uma solução para uma classe de problemas.



3
Algoritmo a priori em inglês simples?
Eu li um artigo wiki sobre Apriori. Tenho problemas para entender a ameixa e a etapa de ingresso. Alguém pode me explicar como o algoritmo Apriori funciona em termos simples (para que iniciantes como eu possam entender facilmente)? Será bom se alguém explicar o processo passo a passo envolvido nele.

3
Ciclagem no algoritmo k-means
Segundo o wiki, o critério de convergência mais utilizado é "a atribuição não mudou". Eu queria saber se o ciclismo pode ocorrer se usarmos esse critério de convergência? Eu ficaria satisfeito se alguém apontasse uma referência a um artigo que dê um exemplo de ciclismo ou prove que isso é …

3
Cluster com economia de espaço
A maioria dos algoritmos de agrupamento que eu vi começou com a criação de distâncias cada um entre todos os pontos, o que se torna problemático em conjuntos de dados maiores. Existe alguém que não faz isso? Ou faz isso em algum tipo de abordagem parcial / aproximada / escalonada? …


2
Calcular curva ROC para dados
Portanto, tenho 16 ensaios em que estou tentando autenticar uma pessoa de uma característica biométrica usando a Distância de Hamming. Meu limite está definido como 3,5. Meus dados estão abaixo e apenas o teste 1 é um verdadeiro positivo: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 



3
Como executar SVD para atribuir valores ausentes, um exemplo concreto
Eu li os ótimos comentários sobre como lidar com valores ausentes antes de aplicar o SVD, mas gostaria de saber como ele funciona com um exemplo simples: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Dada a matriz …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 

2
Por que um modelo estatístico superajustaria se recebesse um grande conjunto de dados?
Meu projeto atual pode exigir que eu construa um modelo para prever o comportamento de um determinado grupo de pessoas. o conjunto de dados de treinamento contém apenas 6 variáveis ​​(id é apenas para fins de identificação): id, age, income, gender, job category, monthly spend em que monthly spendé a …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 





Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.