Perguntas com a marcação «regularization»

Inclusão de restrições adicionais (normalmente uma penalidade por complexidade) no processo de ajuste do modelo. Usado para evitar o ajuste excessivo / aprimorar a precisão preditiva.

2
Explicação lúcida para “estabilidade numérica da inversão da matriz” na regressão de crista e seu papel na redução do excesso de ajuste
Entendo que podemos empregar regularização em um problema de regressão de mínimos quadrados como w∗=argminw[(y−Xw)T(y−Xw)+λ∥w∥2]w∗=argminw⁡[(y−Xw)T(y−Xw)+λ‖w‖2]\boldsymbol{w}^* = \operatorname*{argmin}_w \left[ (\mathbf y-\mathbf{Xw})^T(\boldsymbol{y}-\mathbf{Xw}) + \lambda\|\boldsymbol{w}\|^2 \right] e que esse problema tem uma solução de formulário fechado como: w^=(XTX+λI)−1XTy.w^=(XTX+λI)−1XTy.\hat{\boldsymbol{w}} = (\boldsymbol{X}^T\boldsymbol{X}+\lambda\boldsymbol{I})^{-1}\boldsymbol{X}^T\boldsymbol{y}. Vemos que na 2ª equação, a regularização está simplesmente adicionando λλ\lambda à diagonal …



4
Regularização: por que multiplicar por 1 / 2m?
Nas notas da terceira semana de aula da aula Coursera Machine Learning de Andrew Ng , um termo é adicionado à função de custo para implementar a regularização: J+( θ ) = J( θ ) + λ2 m∑j = 1nθ2jJ+(θ)=J(θ)+λ2m∑j=1nθj2J^+(\theta) = J(\theta) + \frac{\lambda}{2m} \sum_{j=1}^n \theta_j^2 As notas da palestra …


1
Como comparar eventos observados x eventos esperados?
Suponha que eu tenha uma amostra de frequências de 4 eventos possíveis: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 e tenho as probabilidades esperadas de meus eventos ocorrerem: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Com a soma das frequências …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 

2
Calcular curva ROC para dados
Portanto, tenho 16 ensaios em que estou tentando autenticar uma pessoa de uma característica biométrica usando a Distância de Hamming. Meu limite está definido como 3,5. Meus dados estão abaixo e apenas o teste 1 é um verdadeiro positivo: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 

1
Técnicas para detectar sobreajuste
Eu tive uma entrevista de emprego para uma posição de ciência de dados. Durante a entrevista, perguntaram-me o que devo fazer para garantir que o modelo não seja ajustado demais. Minha primeira resposta foi usar a validação cruzada para avaliar o desempenho do modelo. No entanto, o entrevistador disse que …


1
Parâmetro de regularização LASSO do algoritmo LARS
Em seu artigo seminal 'Regressão a Menor Ângulo' , Efron et al descrevem uma modificação simples do algoritmo LARS que permite calcular caminhos completos de regularização do LASSO. Eu implementei essa variante com êxito e geralmente plotei o caminho de saída em relação ao número de etapas (iterações sucessivas do …



1
Faixa de lambda na regressão líquida elástica
\def\l{|\!|} Dada a regressão líquida elástica minb12||y−Xb||2+αλ||b||22+(1−α)λ||b||1minb12||y−Xb||2+αλ||b||22+(1−α)λ||b||1\min_b \frac{1}{2}\l y - Xb \l^2 + \alpha\lambda \l b\l_2^2 + (1 - \alpha) \lambda \l b\l_1 como um intervalo apropriado de λλ\lambda ser escolhido para validação cruzada? No caso α=1α=1\alpha=1 (regressão de crista), a fórmula dof=∑js2js2j+λdof=∑jsj2sj2+λ\textrm{dof} = \sum_j \frac{s_j^2}{s_j^2+\lambda} pode ser usado para …



Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.