Perguntas com a marcação «feature-selection»

Métodos e princípios de seleção de um subconjunto de atributos para uso em modelagem adicional


1
Como interpretar os resultados quando o cume e o laço executam bem separadamente, mas produzem coeficientes diferentes
Estou executando um modelo de regressão com Lasso e Ridge (para prever uma variável de resultado discreto variando de 0 a 5). Antes de executar o modelo, uso o SelectKBestmétodo de scikit-learnpara reduzir o conjunto de recursos de 250 para 25 . Sem uma seleção inicial de recursos, Lasso e …







1
R / mgcv: Por que os produtos tensores te () e ti () produzem superfícies diferentes?
O mgcvpacote para Rpossui duas funções para ajustar as interações do produto tensorial: te()e ti(). Entendo a divisão básica do trabalho entre os dois (ajustando uma interação não linear versus decompondo essa interação em efeitos principais e uma interação). O que não entendo é o porquê te(x1, x2)e ti(x1) + …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

2
Soft-limiar vs. Lasso penalização
Estou tentando resumir o que entendi até agora na análise multivariada penalizada com conjuntos de dados de alta dimensão, e ainda luto para obter uma definição adequada da penalização de limiar suave versus penalização por Lasso (ou ).L1L1L_1 Mais precisamente, usei a regressão PLS esparsa para analisar a estrutura de …





1
Árvores de decisão dimensionamento variável (recurso) e normalização variável (ajuste) necessários em quais implementações?
Em muitos algoritmos de aprendizado de máquina, dimensionamento recurso (aka variável de escala, normalização) é um comum prepocessing passo Wikipedia - função Dimensionamento - esta questão estava perto Pergunta # 41704 - Como e por que a normalização e operação de referência de escala? Eu tenho duas perguntas especificamente em …

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.