Perguntas com a marcação «least-squares»

Refere-se a uma técnica de estimativa geral que seleciona o valor do parâmetro para minimizar a diferença ao quadrado entre duas quantidades, como o valor observado de uma variável e o valor esperado dessa observação, condicionado ao valor do parâmetro. Os modelos lineares gaussianos são ajustados por mínimos quadrados e mínimos quadrados é a ideia subjacente ao uso do erro quadrático médio (MEE) como forma de avaliar um estimador.

2
Referências online dando introdução ao OLS
Comecei a estudar estimadores de mínimos quadrados ordinários (OLS) e ainda estou no início. Já comprei alguns livros sobre econometria, mas não encontrei nada online. Então, eu queria saber se existe um site, página inicial ou outros recursos on-line que expliquem os estimadores de mínimos quadrados de uma maneira exaustiva. …

3
Quando os mínimos quadrados seriam uma má ideia?
Se eu tiver um modelo de regressão: onde e ,Y= Xβ+ εY=Xβ+ε Y = X\beta + \varepsilon V [ε]=Id∈ Rn × nV[ε]=Id∈Rn×n\mathbb{V}[\varepsilon] = Id \in \mathcal{R} ^{n \times n}E [ε]=(0,…,0)E[ε]=(0,…,0)\mathbb{E}[\varepsilon]=(0, \ldots , 0) quando o uso de , o estimador ordinário de mínimos quadrados de , seria uma má escolha …



4
Qual é a diferença entre técnicas de mínimos quadrados e pseudo-inversas para regressão linear?
Eu estou querendo saber a diferença entre eles. Basicamente, eles fazem o mesmo trabalho no final, encontrando coeficientes de parâmetros, mas parecem diferentes da maneira como encontramos os coeficientes. Para mim, o método dos mínimos quadrados parece usar diferenciação e forma de matriz para encontrar os coeficientes e o pseudo-inverso …

3
Cálculo dos valores de p em mínimos quadrados restritos (não negativos)
Eu tenho usado o Matlab para realizar mínimos quadrados sem restrição (mínimos quadrados comuns) e ele gera automaticamente os coeficientes, a estatística de teste e os valores de p. Minha pergunta é que, ao executar mínimos quadrados restritos (coeficientes estritamente não negativos), ele apenas gera os coeficientes, SEM estatística de …






1
Como incorporar um outlier inovador na observação 48 no meu modelo ARIMA?
Estou trabalhando em um conjunto de dados. Depois de usar algumas técnicas de identificação de modelos, criei um modelo ARIMA (0,2,1). Usei a detectIOfunção no pacote TSAem R para detectar um outlier inovador (IO) na 48ª observação do meu conjunto de dados original. Como faço para incorporar esse erro externo …
10 r  time-series  arima  outliers  hypergeometric  fishers-exact  r  time-series  intraclass-correlation  r  logistic  glmm  clogit  mixed-model  spss  repeated-measures  ancova  machine-learning  python  scikit-learn  distributions  data-transformation  stochastic-processes  web  standard-deviation  r  machine-learning  spatial  similarities  spatio-temporal  binomial  sparse  poisson-process  r  regression  nonparametric  r  regression  logistic  simulation  power-analysis  r  svm  random-forest  anova  repeated-measures  manova  regression  statistical-significance  cross-validation  group-differences  model-comparison  r  spatial  model-evaluation  parallel-computing  generalized-least-squares  r  stata  fitting  mixture  hypothesis-testing  categorical-data  hypothesis-testing  anova  statistical-significance  repeated-measures  likert  wilcoxon-mann-whitney  boxplot  statistical-significance  confidence-interval  forecasting  prediction-interval  regression  categorical-data  stata  least-squares  experiment-design  skewness  reliability  cronbachs-alpha  r  regression  splines  maximum-likelihood  modeling  likelihood-ratio  profile-likelihood  nested-models 


4
Modelo de Histórico de Eventos em Tempo Discreto (Sobrevivência) em R
Estou tentando ajustar um modelo de tempo discreto no R, mas não sei como fazê-lo. Eu li que você pode organizar a variável dependente em linhas diferentes, uma para cada observação no tempo, e usar a glmfunção com um link logit ou cloglog. Neste sentido, tem três colunas: ID, Event(1 …
10 r  survival  pca  sas  matlab  neural-networks  r  logistic  spatial  spatial-interaction-model  r  time-series  econometrics  var  statistical-significance  t-test  cross-validation  sample-size  r  regression  optimization  least-squares  constrained-regression  nonparametric  ordinal-data  wilcoxon-signed-rank  references  neural-networks  jags  bugs  hierarchical-bayesian  gaussian-mixture  r  regression  svm  predictive-models  libsvm  scikit-learn  probability  self-study  stata  sample-size  spss  wilcoxon-mann-whitney  survey  ordinal-data  likert  group-differences  r  regression  anova  mathematical-statistics  normal-distribution  random-generation  truncation  repeated-measures  variance  variability  distributions  random-generation  uniform  regression  r  generalized-linear-model  goodness-of-fit  data-visualization  r  time-series  arima  autoregressive  confidence-interval  r  time-series  arima  autocorrelation  seasonality  hypothesis-testing  bayesian  frequentist  uninformative-prior  correlation  matlab  cross-correlation 

1
Variável categórica de regressão linear R valor "oculto"
Este é apenas um exemplo que encontrei várias vezes, portanto não tenho dados de amostra. Executando um modelo de regressão linear em R: a.lm = lm(Y ~ x1 + x2) x1é uma variável contínua. x2é categórico e possui três valores, por exemplo, "Baixo", "Médio" e "Alto". No entanto, a saída …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.