Perguntas com a marcação «cross-validation»

Reter repetidamente os subconjuntos dos dados durante o ajuste do modelo para quantificar o desempenho do modelo nos subconjuntos de dados retidos.






2
A divisão dos dados em conjuntos de teste e treinamento é puramente uma coisa de "estatísticas"?
Eu sou um estudante de física estudando aprendizado de máquina / ciência de dados, por isso não pretendo que esta pergunta inicie conflitos :) No entanto, uma grande parte de qualquer programa de graduação em física é fazer laboratórios / experimentos, o que significa muitos dados processamento e análise estatística. …


1
Por que uma grande variedade de K está diminuindo minha pontuação de validação cruzada?
Brincando com o Boston Housing Dataset e RandomForestRegressor(com parâmetros padrão) no scikit-learn, notei algo estranho: a pontuação média de validação cruzada diminuiu à medida que aumentava o número de dobras além de 10. Minha estratégia de validação cruzada era a seguinte: cv_met = ShuffleSplit(n_splits=k, test_size=1/k) scores = cross_val_score(est, X, y, …







1
R / mgcv: Por que os produtos tensores te () e ti () produzem superfícies diferentes?
O mgcvpacote para Rpossui duas funções para ajustar as interações do produto tensorial: te()e ti(). Entendo a divisão básica do trabalho entre os dois (ajustando uma interação não linear versus decompondo essa interação em efeitos principais e uma interação). O que não entendo é o porquê te(x1, x2)e ti(x1) + …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.