Perguntas com a marcação «kernel-smoothing»

Técnicas de suavização de kernel, como estimativa de densidade de kernel (KDE) e regressão de kernel Nadaraya-Watson, estimam funções por interpolação local a partir de pontos de dados. Não deve ser confundido com [kernel-trick], para os kernels usados, por exemplo, nos SVMs.


4
Bons métodos para gráficos de densidade de variáveis ​​não negativas em R?
plot(density(rexp(100)) Obviamente, toda a densidade à esquerda de zero representa viés. Estou procurando resumir alguns dados para não estatísticos e quero evitar perguntas sobre por que os dados não negativos têm densidade à esquerda de zero. Os gráficos são para verificação aleatória; Quero mostrar as distribuições de variáveis ​​por grupos …


1
"Estimativa da densidade do kernel" é uma convolução do quê?
Estou tentando entender melhor a estimativa da densidade do kernel. Usando a definição da Wikipedia: https://en.wikipedia.org/wiki/Kernel_density_estimation#Definition fh^( x ) = 1n∑ni = 1Kh( x - xEu)= 1n h∑ni = 1K( x - xEuh)fh^(x)=1n∑i=1nKh(x−xi)=1nh∑i=1nK(x−xih) \hat{f_h}(x) = \frac{1}{n}\sum_{i=1}^n K_h (x - x_i) \quad = \frac{1}{nh} \sum_{i=1}^n K\Big(\frac{x-x_i}{h}\Big) Vamos considerar como uma função …


4
Como projetar um novo vetor no espaço PCA?
Depois de executar a análise de componentes principais (PCA), quero projetar um novo vetor no espaço do PCA (ou seja, encontrar suas coordenadas no sistema de coordenadas do PCA). Eu calculei o PCA na linguagem R usando prcomp. Agora eu devo poder multiplicar meu vetor pela matriz de rotação PCA. …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 


2
Se larguras variáveis ​​do kernel costumam ser boas para a regressão do kernel, por que geralmente não são boas para a estimativa da densidade do kernel?
Esta questão é motivada por discussões em outros lugares . Núcleos variáveis ​​são frequentemente usados ​​na regressão local. Por exemplo, o loess é amplamente usado e funciona bem como uma regressão mais suave, e é baseado em um kernel de largura variável que se adapta à escassez de dados. Por …

1
Qual é a intuição por trás de amostras intercambiáveis ​​sob a hipótese nula?
Os testes de permutação (também chamados de teste de randomização, teste de re-randomização ou teste exato) são muito úteis e úteis quando a suposição de distribuição normal exigida por, por exemplo, t-testnão é atendida e quando a transformação dos valores pela classificação do teste não-paramétrico como Mann-Whitney-U-testlevaria a mais informações …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 





1
Largura de banda do kernel: regras de Scott vs. Silverman
Alguém poderia explicar em inglês simples qual é a diferença entre as regras práticas de Scott e Silverman para a seleção de largura de banda? Especificamente, quando é um melhor que o outro? Está relacionado à distribuição subjacente? Número de amostras? PS Estou me referindo ao código no SciPy .


Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.