Perguntas com a marcação «cox-model»

A regressão dos riscos proporcionais de Cox é um método semi-paramétrico para análise de sobrevivência. Nenhuma forma distributiva precisa ser assumida, apenas que o efeito do aumento de uma unidade em uma covariável é um múltiplo constante.

4
Como interpreto uma curva de sobrevivência do modelo de risco Cox?
Como você interpreta uma curva de sobrevivência a partir do modelo de risco proporcional cox? Neste exemplo de brinquedo, suponha que tenhamos um modelo de risco proporcional ao cox na agevariável dos kidneydados e gere a curva de sobrevivência. library(survival) fit <- coxph(Surv(time, status)~age, data=kidney) plot(conf.int="none", survfit(fit)) grid() Por exemplo, …

1
Como gerar dados de sobrevivência com covariáveis ​​dependentes do tempo usando R
Quero gerar tempo de sobrevivência a partir de um modelo de riscos proporcionais de Cox que contenha covariáveis ​​dependentes do tempo. O modelo é h(t|Xi)=h0(t)exp(γXi+αmi(t))h(t|Xi)=h0(t)exp⁡(γXi+αmi(t))h(t|X_i) =h_0(t) \exp(\gamma X_i + \alpha m_{i}(t)) onde é gerado a partir do binômio (1,0,5) e .XiXiX_imi(t)=β0+β1Xi+β2Xitmi(t)=β0+β1Xi+β2Xitm_{i}(t)=\beta_0 + \beta_1 X_{i} + \beta_2 X_{i} t Os valores …



1
Como comparar eventos observados x eventos esperados?
Suponha que eu tenha uma amostra de frequências de 4 eventos possíveis: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 e tenho as probabilidades esperadas de meus eventos ocorrerem: p1 - 0.2 p2 - 0.1 p3 - 0.1 p4 - 0.6 Com a soma das frequências …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 



1
Gráfico de previsão diferente de sobrevivência coxph e rms cph
Criei minha própria versão ligeiramente aprimorada do termplot que utilizo neste exemplo, você pode encontrá-la aqui . Eu publiquei anteriormente no SO, mas quanto mais penso nisso, acredito que isso provavelmente esteja mais relacionado à interpretação do modelo de riscos proporcionais de Cox do que com a codificação real. O …
9 r  survival  cox-model 

1
Qual é a diferença entre os diferentes tipos de resíduos na análise de sobrevivência (regressão de Cox)?
Eu sou bastante novo na análise de sobrevivência. Fui aconselhado a procurar e aprender os resíduos de Schoenfeld como parte de um diagnóstico de modelo para verificar se a suposição de risco proporcional foi atendida. Ao pesquisar isso, vi referências a muitos tipos diferentes de resíduos, incluindo: Cox-Snell Desvio Martingale …



3
Como executar SVD para atribuir valores ausentes, um exemplo concreto
Eu li os ótimos comentários sobre como lidar com valores ausentes antes de aplicar o SVD, mas gostaria de saber como ele funciona com um exemplo simples: Movie1 Movie2 Movie3 User1 5 4 User2 2 5 5 User3 3 4 User4 1 5 User5 5 1 5 Dada a matriz …
8 r  missing-data  data-imputation  svd  sampling  matlab  mcmc  importance-sampling  predictive-models  prediction  algorithms  graphical-model  graph-theory  r  regression  regression-coefficients  r-squared  r  regression  modeling  confounding  residuals  fitting  glmm  zero-inflation  overdispersion  optimization  curve-fitting  regression  time-series  order-statistics  bayesian  prior  uninformative-prior  probability  discrete-data  kolmogorov-smirnov  r  data-visualization  histogram  dimensionality-reduction  classification  clustering  accuracy  semi-supervised  labeling  state-space-models  t-test  biostatistics  paired-comparisons  paired-data  bioinformatics  regression  logistic  multiple-regression  mixed-model  random-effects-model  neural-networks  error-propagation  numerical-integration  time-series  missing-data  data-imputation  probability  self-study  combinatorics  survival  cox-model  statistical-significance  wilcoxon-mann-whitney  hypothesis-testing  distributions  normal-distribution  variance  t-distribution  probability  simulation  random-walk  diffusion  hypothesis-testing  z-test  hypothesis-testing  data-transformation  lognormal  r  regression  agreement-statistics  classification  svm  mixed-model  non-independent  observational-study  goodness-of-fit  residuals  confirmatory-factor  neural-networks  deep-learning 



2
Regressão Cox em larga escala com R (Big Data)
Estou tentando executar uma regressão de Cox em um exemplo de conjunto de dados de 2.000.000 de linhas da seguinte maneira, usando apenas R. Esta é uma tradução direta de um PHREG no SAS. A amostra é representativa da estrutura do conjunto de dados original. ## library(survival) ### Replace 100000 …

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.