Perguntas com a marcação «normality-assumption»

Muitos métodos estatísticos assumem que os dados são normalmente distribuídos. Use esta tag para perguntas sobre a suposição e teste de normalidade ou sobre a normalidade como uma * propriedade *. Use [distribuição normal] para perguntas sobre a distribuição normal em si.



4
Quais são os valores corretos para precisão e rechamada em casos extremos?
Precisão é definida como: p = true positives / (true positives + false positives) É verdade que, como true positivese false positivesabordagem 0, a precisão se aproxima de 1? Mesma pergunta para recall: r = true positives / (true positives + false negatives) No momento, estou implementando um teste estatístico …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 


2
Como testar as diferenças entre duas médias de grupos quando os dados não são normalmente distribuídos?
Eliminarei todos os detalhes e experimentos biológicos e citarei apenas o problema em questão e o que fiz estatisticamente. Gostaria de saber se está certo e, se não, como proceder. Se os dados (ou minha explicação) não forem claros o suficiente, tentarei explicar melhor editando. Suponha que eu tenha dois …




5
Como a distribuição amostral dos meios amostrais se aproxima da média da população?
Estou tentando aprender estatística porque acho que ela é tão prevalente que me proíbe de aprender algumas coisas, se não entendi direito. Estou tendo problemas para entender essa noção de distribuição amostral dos meios amostrais. Não consigo entender como alguns livros e sites explicaram isso. Acho que tenho um entendimento, …

2
ANOVA de medidas repetidas: qual é a suposição de normalidade?
Estou confuso sobre a suposição de normalidade em medidas repetidas ANOVA. Especificamente, estou me perguntando que tipo de normalidade exatamente deve ser satisfeita. Ao ler a literatura e as respostas no currículo, encontrei três formulações distintas dessa suposição. A variável dependente dentro de cada condição (repetida) deve ser distribuída normalmente. …


1
Pacote GBM vs. Caret usando GBM
Estive usando o ajuste de modelo caret, mas depois executei novamente o modelo usando o gbmpacote. Entendo que o caretpacote usa gbme a saída deve ser a mesma. No entanto, apenas um teste rápido usando data(iris)mostra uma discrepância no modelo de cerca de 5% usando RMSE e R ^ 2 …



5
Como executar a imputação de valores em um número muito grande de pontos de dados?
Eu tenho um conjunto de dados muito grande e faltam cerca de 5% de valores aleatórios. Essas variáveis ​​estão correlacionadas entre si. O exemplo a seguir do conjunto de dados R é apenas um exemplo de brinquedo com dados correlatos simulados. set.seed(123) # matrix of X variable xmat <- matrix(sample(-1:1, …
12 r  random-forest  missing-data  data-imputation  multiple-imputation  large-data  definition  moving-window  self-study  categorical-data  econometrics  standard-error  regression-coefficients  normal-distribution  pdf  lognormal  regression  python  scikit-learn  interpolation  r  self-study  poisson-distribution  chi-squared  matlab  matrix  r  modeling  multinomial  mlogit  choice  monte-carlo  indicator-function  r  aic  garch  likelihood  r  regression  repeated-measures  simulation  multilevel-analysis  chi-squared  expected-value  multinomial  yates-correction  classification  regression  self-study  repeated-measures  references  residuals  confidence-interval  bootstrap  normality-assumption  resampling  entropy  cauchy  clustering  k-means  r  clustering  categorical-data  continuous-data  r  hypothesis-testing  nonparametric  probability  bayesian  pdf  distributions  exponential  repeated-measures  random-effects-model  non-independent  regression  error  regression-to-the-mean  correlation  group-differences  post-hoc  neural-networks  r  time-series  t-test  p-value  normalization  probability  moments  mgf  time-series  model  seasonality  r  anova  generalized-linear-model  proportion  percentage  nonparametric  ranks  weighted-regression  variogram  classification  neural-networks  fuzzy  variance  dimensionality-reduction  confidence-interval  proportion  z-test  r  self-study  pdf 

Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.