Perguntas com a marcação «outliers»

Um outlier é uma observação que parece incomum ou não está bem descrita em relação a uma simples caracterização de um conjunto de dados. Uma possibilidade desconcertante é que esses dados venham de uma população diferente daquela que se pretende estudar.


4
A ordem variável importa na regressão linear
Estou investigando a interação entre duas variáveis ​​( e ). Existe uma grande correlação linear entre essas variáveis ​​com . Pela natureza do problema, não posso dizer nada sobre a causa (se causa ou o contrário). Eu gostaria de estudar os desvios da linha de regressão, a fim de detectar …


2
Calcular curva ROC para dados
Portanto, tenho 16 ensaios em que estou tentando autenticar uma pessoa de uma característica biométrica usando a Distância de Hamming. Meu limite está definido como 3,5. Meus dados estão abaixo e apenas o teste 1 é um verdadeiro positivo: Trial Hamming Distance 1 0.34 2 0.37 3 0.34 4 0.29 …
9 mathematical-statistics  roc  classification  cross-validation  pac-learning  r  anova  survival  hazard  machine-learning  data-mining  hypothesis-testing  regression  random-variable  non-independent  normal-distribution  approximation  central-limit-theorem  interpolation  splines  distributions  kernel-smoothing  r  data-visualization  ggplot2  distributions  binomial  random-variable  poisson-distribution  simulation  kalman-filter  regression  lasso  regularization  lme4-nlme  model-selection  aic  r  mcmc  dlm  particle-filter  r  panel-data  multilevel-analysis  model-selection  entropy  graphical-model  r  distributions  quantiles  qq-plot  svm  matlab  regression  lasso  regularization  entropy  inference  r  distributions  dataset  algorithms  matrix-decomposition  regression  modeling  interaction  regularization  expected-value  exponential  gamma-distribution  mcmc  gibbs  probability  self-study  normality-assumption  naive-bayes  bayes-optimal-classifier  standard-deviation  classification  optimization  control-chart  engineering-statistics  regression  lasso  regularization  regression  references  lasso  regularization  elastic-net  r  distributions  aggregation  clustering  algorithms  regression  correlation  modeling  distributions  time-series  standard-deviation  goodness-of-fit  hypothesis-testing  statistical-significance  sample  binary-data  estimation  random-variable  interpolation  distributions  probability  chi-squared  predictor  outliers  regression  modeling  interaction 

1
Localizando outliers em um gráfico de dispersão
Eu tenho um conjunto de pontos de dados que deveriam ficar em um lugar geométrico e seguir um padrão, mas existem alguns pontos de dispersão do lugar geométrico principal que causam incerteza em minha análise final. Eu gostaria de obter um local limpo para aplicá-lo mais tarde em minha análise. …


4
Existe uma versão do coeficiente de correlação menos sensível aos valores discrepantes?
O coeficiente de correlação é: r =∑k(xk-x¯) (yk-yk¯)sxsyn - 1r=∑k(xk−x¯)(yk−yk¯)sxsyn−1 r = \frac{\sum_k \frac{(x_k - \bar{x}) (y_k - \bar{y_k})}{s_x s_y}}{n-1} A média da amostra e o desvio padrão da amostra são sensíveis a valores discrepantes. Além disso, o mecanismo em que, r =∑kcoisakn - 1r=∑kstuffkn−1 r = \frac{\sum_k \text{stuff}_k}{n -1} …

2
O que são "franjas"?
Recentemente, recebi um comentário de um revisor de uma revista que me pediu para relatar como eu lidei com outliers e franjas . Eu não tinha ouvido falar do termo "franjas" e, quando pesquisei no Google, havia alguns artigos, mas nenhuma definição concisa. Por isso, pensei que seria bom ter …

2
Problemas com detecção de outlier
Em um post do blog, Andrew Gelman escreve : A regressão passo a passo é uma dessas coisas, como detecção externa e gráficos de pizza, que parecem populares entre os não estatísticos, mas são considerados pelos estatísticos uma piada. Entendo a referência aos gráficos de setores circulares, mas por que …

1
Detecção de outlier em distribuições beta
Digamos que eu tenha uma grande amostra de valores em . Gostaria de estimar a distribuição subjacente . A maioria das amostras vem dessa distribuição assumida , enquanto o restante são discrepantes que eu gostaria de ignorar na estimativa de e .Beta ( α , β ) Beta ( α …

2
Por que um modelo estatístico superajustaria se recebesse um grande conjunto de dados?
Meu projeto atual pode exigir que eu construa um modelo para prever o comportamento de um determinado grupo de pessoas. o conjunto de dados de treinamento contém apenas 6 variáveis ​​(id é apenas para fins de identificação): id, age, income, gender, job category, monthly spend em que monthly spendé a …
8 modeling  large-data  overfitting  clustering  algorithms  error  spatial  r  regression  predictive-models  linear-model  average  measurement-error  weighted-mean  error-propagation  python  standard-error  weighted-regression  hypothesis-testing  time-series  machine-learning  self-study  arima  regression  correlation  anova  statistical-significance  excel  r  regression  distributions  statistical-significance  contingency-tables  regression  optimization  measurement-error  loss-functions  image-processing  java  panel-data  probability  conditional-probability  r  lme4-nlme  model-comparison  time-series  probability  probability  conditional-probability  logistic  multiple-regression  model-selection  r  regression  model-based-clustering  svm  feature-selection  feature-construction  time-series  forecasting  stationarity  r  distributions  bootstrap  r  distributions  estimation  maximum-likelihood  garch  references  probability  conditional-probability  regression  logistic  regression-coefficients  model-comparison  confidence-interval  r  regression  r  generalized-linear-model  outliers  robust  regression  classification  categorical-data  r  association-rules  machine-learning  distributions  posterior  likelihood  r  hypothesis-testing  normality-assumption  missing-data  convergence  expectation-maximization  regression  self-study  categorical-data  regression  simulation  regression  self-study  self-study  gamma-distribution  modeling  microarray  synthetic-data 


3
Teste post hoc em uma ANOVA de design misto 2x3 usando SPSS?
Eu tenho dois grupos de 10 participantes que foram avaliados três vezes durante um experimento. Para testar as diferenças entre os grupos e nas três avaliações, executei um ANOVA de desenho misto 2x3 com group(controle, experimental), time(primeiro, segundo, três) e group x time. Ambos timee groupresultaram significativos, além de haver …
8 anova  mixed-model  spss  post-hoc  bonferroni  time-series  unevenly-spaced-time-series  classification  normal-distribution  discriminant-analysis  probability  normal-distribution  estimation  sampling  classification  svm  terminology  pivot-table  random-generation  self-study  estimation  sampling  estimation  categorical-data  maximum-likelihood  excel  least-squares  instrumental-variables  2sls  total-least-squares  correlation  self-study  variance  unbiased-estimator  bayesian  mixed-model  ancova  statistical-significance  references  p-value  fishers-exact  probability  monte-carlo  particle-filter  logistic  predictive-models  modeling  interaction  survey  hypothesis-testing  multiple-regression  regression  variance  data-transformation  residuals  minitab  r  time-series  forecasting  arima  garch  correlation  estimation  least-squares  bias  pca  predictive-models  genetics  sem  partial-least-squares  nonparametric  ordinal-data  wilcoxon-mann-whitney  bonferroni  wilcoxon-signed-rank  traminer  regression  econometrics  standard-error  robust  misspecification  r  probability  logistic  generalized-linear-model  r-squared  effect-size  gee  ordered-logit  bayesian  classification  svm  kernel-trick  nonlinear  bayesian  pca  dimensionality-reduction  eigenvalues  probability  distributions  mathematical-statistics  estimation  nonparametric  kernel-smoothing  expected-value  filter  mse  time-series  correlation  data-visualization  clustering  estimation  predictive-models  recommender-system  sparse  hypothesis-testing  data-transformation  parametric  probability  summations  correlation  pearson-r  spearman-rho  bayesian  replicability  dimensionality-reduction  discriminant-analysis  outliers  weka 

1
Intervalos de confiança ao usar o teorema de Bayes
Estou computando algumas probabilidades condicionais e intervalos de confiança associados a 95%. Para muitos de meus casos, tenho contagens diretas de xsucessos fora dos ntestes (de uma tabela de contingência), para que eu possa usar um intervalo de confiança binomial, como é fornecido por binom.confint(x, n, method='exact')in R. Em outros …


Ao utilizar nosso site, você reconhece que leu e compreendeu nossa Política de Cookies e nossa Política de Privacidade.
Licensed under cc by-sa 3.0 with attribution required.